화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.107, 239-248, March, 2022
Large-scale synthesis of functional tungsten oxide with controlled oxygen-deficiency by a continuous screw reactor
E-mail:
Oxygen-deficient tungsten oxide is one of the promising materials for broad applications due to its enhanced characteristics owing to the oxygen-deficiency. Development of a mass production process is crucial in consideration of the increasing demand of this material in industrial purposes. A continuous screw reactor was employed to the production of oxygen-deficient tungsten oxide. The effects of hydrogen concentration and the reduction time on the composition of products were investigated. The maximum WO2.72 mole fraction of 0.95 was achieved by optimum hydrogen concentration and reduction time. X-ray Photoelectron Spectroscopy (XPS) spectra of the products indicated the introduction of oxygen-deficiency. Anisotropic crystal growth in the (010) direction is found in the cross-section observation by Scanning Electron Microscope (SEM). The displacing value from High-Resolution Transmission Electron Microscope (HR-TEM) demonstrated the existence of WO2.72. The reaction kinetic was investigated by thermogravimetric analysis. Estimated activation energy supported the results from the continuous process. This work suggests the promising process for the large-scale production of functional materials.
  1. Zu D, Wang H, Lin S, Ou G, Wei H, Sun S et al., Nano Res., 12(9), 2150 (2019)
  2. Baik J, Yun G, Balamurugan M, Lee SK, Kim JH, Ahn KS et al., J. Electrochem. Soc., 163, H1165 (2016)
  3. Zhang S, Liu G, Qiao W, Wang J, Ling L, J. Colloid Interface Sci., 562, 193 (2020)
  4. Yu C, Xu H, Gong Y, Chen R, Hui Z, Zhao X, Sun Y, Chen Q, Zhou J, Ji W, Sun G, Huang W, AAAS Res., 6742715 (2021)
  5. Dai H, Wang L, Zhao Y, Xue J, Zhou R, Yu C, An J, Zhou J, Chen Q, Sun G, Huang W, AAAS Res., 5130420 (2021)
  6. Sinhamahapatra A, Jeon JP, Kang J, Han B, Yu JS, Sci. Rep., 6, 27218 (2016)
  7. Zhao Y, Xue J, Chang J, Dai H, Yu C, Zhou J et al., J. Electroanal. Chem., 889 (2021)
  8. Hua L, Hui Z, Sun Y, Zhao X, Xu H, Gong Y et al., Nanoscale, 10, 21006 (2018)
  9. Chen X, Liu L, Yu P, Mao S, Science, 331(6018), 746 (2011)
  10. Rodriguez JA, Hanson JC, Frenkel AI, Kim JY, Perez M, J. Am. Chem. Soc., 124(2), 346 (2012)
  11. Lu X, Wang G, Xie S, Shi J, Li W, Tong Y et al., Chem. Commun., 48, 7717 (2012)
  12. Xia T, Wallenmeyer P, Anderson A, Murowchick J, Liu L, Chen X, RSC Adv., 4, 41654 (2014)
  13. Yao G, Pan S, Yuan J, Guan Z, Li X, 296, 117187 (2021)
  14. Aydinyan SV, Kirakosyan HV, Zakaryan MK, Abovyan LS, Kharatyan SL, Peikrishvili A et al., Eurasian Chem.-Technol. J., 20, 301 (2018)
  15. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM, Ionics, 6, 321 (2000)
  16. Sun Y, Wang W, Qin J, Zhao D, Mao B, Xiao Y et al., Electrochim. Acta, 187, 329 (2016)
  17. Li W, Fu Z, Appl. Surf. Sci., 256, 2447 (2010)
  18. Huang K, Pan Q, Yang F, Ni S, Wei X, He D, J. Phys. D-Appl. Phys., 41(15) (2008)
  19. Sasidharan M, Gunawardhana N, Yoshio M, Nakashima K, Nano Energy, 1(3), 503 (2012)
  20. Qui VHV, Jo IR, Kang SH, Ahn KS, J. Ind. Eng. Chem., 94, 264 (2021)
  21. Oderinde O, Hussain I, Kang M, Wu Y, Mulenga K, Adebayo I et al., J. Ind. Eng. Chem., 80, 1 (2019)
  22. Koo MS, Chen X, Cho K, An T, Choi W, Environ. Sci. Technol., 53, 9926 (2019)
  23. Ding JR, Kim KS, AIChE J., 62, 421 (2016)
  24. Yoon SH, Kim KS, J. Ind. Eng. Chem., 73, 52 (2019)
  25. Hu Q, He J, Chang J, Gao J, Huang J, Feng L et al., Nano Mater., 3, 9046 (2020)
  26. Yoon S, Jo C, Noh SY, Lee CW, Song JH, Lee J, Phys. Chem. Chem. Phys., 13, 11060 (2011)
  27. Li Y, Chuang K, Tang H, Li B, Qin Y, Hou Y et al., Electrochim. Acta, 298, 640 (2019)
  28. Chen Z, Ye K, Li M, Zhao S, Luo J, Wu B, J. Electroanal. Chem., 880 (2021)
  29. Pathak R, Gurung A, Elbohy H, Chen K, Reza KM, Bahrami B et al., Nanoscale, 10(34), 15956 (2018)
  30. Feng C, Tang L, Deng Y, Wang J, Tang W, Liu Y et al., Chem. Eng. J., 389 (2020)
  31. Song K, Liu X, Tian C, Deng H, Wang J, Su X, Surf. Interfaces, 14, 245 (2019)
  32. Chen S, Xiao Y, Xie W, Wang Y, Hu Z, Zhang W et al., Nanomaterials, 8, 553 (2018)
  33. Wang T, Gao S, Wang G, Wang H, Bai J, Ma S et al., J. Colloid Interface Sci., 602(15), 767 (2021)
  34. Li Y, Wang C, Zheng H, Wan F, Yu F, Zhang X et al., Appl. Surf. Sci., 391(B), 654 (2017)
  35. Diao J, Yuan W, Qiu Y, Cheng L, Guo X, J. Mater. Chem. A, 7, 6730 (2019)
  36. Kishore R, Gao X, Zhang X, Bieberle-Hutter A, Catal. Today, 321-322, 94 (2019)
  37. Stankova NE, Dimitrov IG, Atanasov PA, Sakano T, Yata Y, Obara M, Thin Solid Films, 518(16), 4597 (2010)
  38. Peng F, Yu W, Lu Y, Sun Y, Fu X, Hao J et al., ACS Appl. Mater. Interfaces, 12(37), 41230 (2020)
  39. Li M, Hu M, Jia D, Ma S, Yan W, Sens. Actuators B-Chem., 186, 140 (2013)
  40. Tian F, Zhao L, Xue X, Shen Y, Jia X, Chen S, Wang Z, Appl. Surf. Sci., 331, 362 (2014)
  41. Shao C, Malik AS, Han J, Li D, Dupuis M, Zong X et al., Nano Energy, 77 (2019)
  42. Ma H, Shen Z, Peng Z, Zhang B, Qian J, Zhao Z, Fu X, Mater. Int., 2(2) (2020)
  43. Wang L, Xie X, Ngoc KD, Yan Q, Ma J, Coord. Chem. Rev., 397, 138 (2019)
  44. Wang G, Ling Y, Wang H, Yang X, Wang C, Zhang J et al., Energy Environ. Sci., 5, 6180 (2012)
  45. Saleen M, Al-Kuhaili MF, Durrani SMA, Hendi AHY, Bakhtiari IA, Ali S, Int. J. Hydrog. Energy, 40(36), 12343 (2015)
  46. Efika CE, Wu C, Williams PT, J. Anal. Appl. Pyrolysis, 95, 87 (2012)
  47. Luz FG, Cordiner S, Manni A, Mulone V, Rocco V, Energy Conv. Manag., 168, 98 (2018)
  48. Kumai E, Tanaka M, Watanabe T, Hoshino T, Hosoda S, Kanamori H, Int. J. Microgravity Sci. Appl., 38(2), 380203 (2021)
  49. Toraya H, J. Appl. Crystallogr., 19, 440 (1986)
  50. Waje SS, Patel AK, Thorat BN, Mujumder AS, Dry. Technol., 25(1), 249 (2007)
  51. Njeng ASB, Vitu S, Clausse M, Dirion JL, Debacq M, Powder Technol., 269, 554 (2015)
  52. Nachenius RW, van de Wardt TA, Ronsse F, Prins W, Fuel Process. Technol., 130, 87 (2015)
  53. Chamberlin C, Carter D, Jacobson A, Fuel Process. Technol., 178, 271 (2018)
  54. Sarin VK, J. Mater. Sci., 10, 593 (1975)
  55. You L, Liu B, Liu T, Fan B, Cai Y, Guo L et al., ACS Appl. Mater. Interfaces, 9, 12629 (2017)
  56. Guo C, Yin S, Yan M, Kobayashi M, Kakihana M, Sato T, Inorg. Chem., 51, 4763 (2012)
  57. Levenspinel O, Fluid-Particle Reactions: Kinetics, in: Chemical Reaction Engineering, third ed., John Wiley & Sons Inc., pp. 566-588, 1999.
  58. Jin H, Zhao X, Guo S, Cao C, Guo L, Int. J. Hydrog. Energy, 41(36), 16070 (2016)
  59. Ryu HJ, Bae DH, Han KH, Lee SY, Jin GT, Choi JH, Korean J. Chem. Eng., 18, 831 (2001)
  60. Setyadji M, Sudaryadi, J. Phys.: Conf. Ser., 1436, 12011 (2020)
  61. Mashifana T, Ntuli F, Okonta F, Afr S, J. Chem. Eng., 27, 1 (2019)
  62. Schulmeyer WV, Ortner HM, Int. J. Refract. Met. Hard Mater., 20(4), 261 (2002)
  63. Haboury R, Pal UB, Zink PA, Gopalan S, Basu SN, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 43B, 1001 (2012)
  64. Austin LG, Ind. Eng. Chem., 53(8), 659 (1961)
  65. Yamamoto Y, Igarashi T, J. Jpn. Soc. Powder Powder Metall., 42(10), 1171 (1994)