Journal of Industrial and Engineering Chemistry, Vol.107, 291-301, March, 2022
Regeneration and sulfur recovery of Lanxess Lewatit AF 5 catalyst from the acidic Albion leaching process using toluene and tetrachloroethylene as organic solvents
E-mail:,
The removal of elemental sulfur from the final leach residue produced during the atmospheric oxidative leaching of chalcopyrite concentrates is both a technical and an economic challenge. Lanxess Lewatit® AF 5 catalyst is a promising candidate material that can collect this elemental sulfur during the leaching process. However, to be cost-effective it is necessary to develop methods to regenerate and recycle the AF 5. In the present research, toluene and tetrachloroethylene were studied as potential organic solvents for the removal of the sulfur from the sulfur loaded AF 5. Also, the recovery of elemental sulfur from the resulting liquor was investigated. The effects of temperature, time and AF 5 to solvent ratio on sulfur removal from the sulfur loaded AF 5 were examined. The optimum desulfurization conditions were 100 °C for toluene and 110 °C for tetrachloroethylene for an AF 5 to solvent ratio of 1:50 and a processing time of 120 min. For toluene and tetrachloroethylene, the sulfur removals were 89.8% and 88.1%, respectively. Toluene was considered to be the most promising solvent due to its higher sulfur removal efficiency and a reduced effect on the behavior of the recycled AF 5 in the leaching process. After three consecutive leaching and regeneration cycles the sulfur absorption capacity and the copper and iron leaching recoveries were essentially unchanged. Copper and iron recoveries of greater than 95% and greater than 80%, respectively, were achieved with the recycled AF 5.
Keywords:Lanxess Lewatit® AF 5;Sulfur removal;Copper sulfide leaching;Toluene;Tetrachloroethylene;Carbon catalyst;Organic solvent;Regeneration
- Debernardi G, Carlesi C, Mineral Process. Extract. Metall. Rev., 34(1), 10 (2013)
- Li Y, Qian G, Li J, Gerson AR, Geochim. Cosmochim. Acta, 161, 188 (2015)
- Parker A, Klauber C, Kougianos A, Watling HR, van Bronswijk W, Hydrometallurgy, 71(1), 265 (2003)
- Watling HR, Hydrometallurgy, 140, 163 (2013)
- Harmer SL, Thomas JE, Fornasiero D, Gerson AR, Geochim. Cosmochim. Acta, 70(17), 4392 (2006)
- Hidalgo T, Kuhar L, Beinlich A, Putnis A, Miner. Eng., 125, 66 (2018)
- Mudd GM, Resour. Policy, 35(2), 98 (2010)
- Watling HR, Hydrometallurgy, 84(1), 81 (2006)
- Wang J, Faraji F, Ghahreman A, J. Ind. Eng. Chem., 104, 333 (2021)
- Tian Z, Li H, Wei Q, Qin W, Yang C, Miner. Eng., 172 (2021)
- Corrans IJ, Angove JE, Activation of a mineral species. CA2071626A1, 1993.
- Hourn M, Halbe D, the International Conference of Randol Copper Hydromet Roundtable, Vol. 99, pp. 97-102, 1999.
- Dreisinger DB, Steyl JDT, Sole KC, Gnoinski J, Dempsey P, Chilean Institute of Mining Engineers, M. and P. Canadian Institute of Mining, Canadian Institute of Mining, Metallurgy and Petroleum, Santiago, pp. 223-238, 2003.
- Collins MJ, Kofluk DK, Hydrometallurgical process for the extraction of copper from sulphidic concentrates. AU722390B2, 2000.
- Dixon DG, Mayne DD, Baxter KG, Can. Metall. Q., 47(3), 327 (2008)
- Dixon D, Olmedo OO, Asselin E, Ghahremaninezhad A, REN Z, Process for leaching metal sulfides with reagents having thiocarbonyl functional groups. WO2016165027A1, 2016.
- Misra M, Fuerstenau MC, Miner. Eng., 18(3), 293 (2005)
- Lin S, Liu R, Li W, Sun W, Hu Y, J. Clean Prod., 244 (2020)
- Liu G, Jiang K, Zhang B, Dong Z, Zhang F, Wang F, Jiang T, Xu B, Minerals, 11(1), 89 (2021)
- Balaz P, Spaldon F, Luptakova A, Paholic G, Bastl Z, Havlik T, Skrobian M, Briancin J, Int. J. Miner. Process., 32(44563), 133 (1991)
- Govindaiah P, Grundy M, Guerra E, Choi Y, Ye Z, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 46(2), 550 (2015)
- Havlik T, Kammel R, Miner. Eng., 8(10), 1125 (1995)
- Havlik T, Skrobian M, Can. Metall. Q., 29(2), 133 (1990)
- Hol A, van der Weijden RD, Van Weert G, Kondos P, Buisman CJN, Hydrometallurgy, 115-116, 93 (2012)
- Kartal M, Xia F, Ralph D, Rickard WDA, Renard F, Li W, Hydrometallurgy, 191 (2020)
- Mathew RJ, Papangelakis VG, Guerra E, Miner. Eng., 23(14), 1113 (2010)
- McDonald RG, Muir DM, 15, (2007).
- Halfyard JE, Hawboldt K, Hydrometallurgy, 109(1), 80 (2011)
- Halvik T, Kammel R, Miner. Eng., 8(10), 1125 (1995)
- Jorjani E, Ghahreman A, Hydrometallurgy, 171, 333 (2017)
- Peng P, Xie H, Lu L, Hydrometallurgy, 80(4), 265 (2005)
- Zhang H, Wang T, Zhang Y, Wang J, Sun B, Pan WP, J. Clean Prod., 276 (2020)
- Ragipani R, Escobar E, Prentice D, Bustillos S, Simonetti D, Sant G, Wang B, Waste Manage., 131, 117 (2021)
- Liu Z, Yan H, Ma W, Xie K, Xu B, Zheng L, Miner. Eng., 149 (2020)
- Y. c/o D.M.C.L. Watanabe, T. c/o D.M.C.L. Fujita, K. c/o D.M.C.L. Saruta, Method of recovering sulfur from leach residues of sulfidic ore processing using distillation and condensation. EP1179605B1, 2004.
- Olper M, Maccagni M, Cossali S, Process for the recovery of elemental sulphur from residues produced in hydrometallurgical processes. US7604785B2, 2009.
- Wang Z, Cai X, Zhang Z, Zhang L, Wang S, Peng J, Trans. Nonferr. Metals Soc. China, 25(2), 640 (2015)
- Y. c/o D.M.C.L. Watanabe, T. c/o D.M.C.L. Fujita, K. c/o D.M.C.L. Saruta, Method of recovering sulfur from leach residues of sulfidic ore processing using distillation and condensation. EP1179605B1, 2004.
- Cowan DH, Jahromi FG, Ghahreman A, Hydrometallurgy, 183, 87 (2019)
- Cowan DH, Jahromi FG, Ghahreman A, Hydrometallurgy, 173, 156 (2017)
- Jahromi FG, Alvial-Hein G, Cowan DH, Ghahreman A, Miner. Eng., 143 (2019)
- Jahromi FG, Cowan DH, Ghahreman A, Hydrometallurgy, 174, 184 (2017)
- Wolowicz A, Hubicki Z, Microporous Mesoporous Mater., 224, 400 (2016)
- Albatrni H, Qiblawey H, Almomani F, Adham S, Khraisheh M, Chemosphere, 233, 809 (2019)
- Jahromi G, Colloids Int., 3(2), 45 (2019)
- Jay S, Cezac P, Serin JP, Contamine F, Martin C, Mercadier J, J. Chem. Eng. Data, 54(12), 3238 (2009)
- Liu J, Wang Z, Qiao Z, Chen W, Zheng L, Zhou J, J. Clean Prod., 267 (2020)
- Przewocki K, Malinski E, Szafranek J, Chem. Geol., 47(44624), 347 (1984)
- Ren Y, Shui H, Peng C, Liu H, Hu Y, Fluid Phase Equilib., 312, 31 (2011)
- Sciamanna SF, Lynn S, Ind. Eng. Chem. Res., 27(3), 485 (1988)
- Wang R, Shen B, Sun H, Zhao J, J. Chem. Eng. Data, 63(3), 553 (2018)
- Wermink WN, Spinu D, Versteeg GF, J. Nat. Gas Eng., 3(2), 71 (2019)
- Torrejos REC, Nisola GM, Min SH, Han JW, Lee SP, Chung WJ, J. Ind. Eng. Chem., 89, 428 (2020)
- Capello C, Fischer U, Hungerb?hler K, Green Chem., 9(9), 927 (2007)
- Byrne FP, Jin S, Paggiola G, Petchey THM, Clark JH, Farmer TJ, Hunt AJ, McElroy CR, Sherwood J, Sustain. Chem Process, 4(1), 7 (2016)
- Turner C, Pure Appl. Chem., 85(12), 2217 (2013)
- Tobiszewski M, Tsakovski S, Simeonov V, Namiesnik J, Pena-Pereira F, Green Chem., 17(10), 4773 (2015)
- Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, Kleine HP, Knight C, Nagy MA, Perry DA, Stefaniak M, Green Chem., 10(1), 31 (2008)
- Jay S, Cezac P, Serin JP, Contamine F, Martin C, Mercadier J, J. Chem. Eng. Data, 54(12), 3238 (2009)
- Sheldon RA, Curr. Opin. Green Sustain. Chem., 18, 13 (2019)
- Chang XX, Mubarak NM, Mazari SA, Jatoi AS, Ahmad A, Khalid M, Walvekar R, Abdullah EC, Karri RR, Siddiqui MTH, Nizamuddin S, J. Ind. Eng. Chem., 104, 362 (2021)
- Kostyniuk A, Bajec D, Likozar B, J. Ind. Eng. Chem., 96, 130 (2021)
- Melnikov YT, Krinitsyn DO, Zhukova NN, Russ. J. Non-Ferrous Metals, 52(1), 8 (2011)
- Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N, Thermochim. Acta, 520(1), 1 (2011)