화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.107, 376-382, March, 2022
Hollow Au nanoparticles-decorated silica as near infrared-activated heat generating nano pigment
E-mail:
The photothermal effect resulting from the local surface plasmon phenomenon of metal nanoparticles is essentially a light–heat conversion mechanism, wherein the heat is generated around the nanoparticles owing to the absorption of light by the nanoparticles. A pigment exhibiting the photothermal effect can be used as a multifunctional nano-pigment providing high heat energy from a small amount of light energy as well as a bright color. In this study, a grayish blue nano-pigment (GBNP) was synthesized using silica nanoparticles and hollow Au nanoparticles that exhibited a relatively high photothermal effect in the near-infra red (NIR) region. By irradiating light in the NIR region, GBNP could selectively produce stable thermal energy with a photothermal efficiency of 39%. It was mixed with paint to confirm its applicability to pigments and heat-generation performance. The surface of paint containing 4 wt% GBNP was increased to 110 °C, exhibiting a stable heat-generation performance under both repeated and continuous NIR irradiation. Furthermore, the thermal energy generated due to the photothermal effect implied the high evaporation efficiency of water droplets on the surface. This pigment might be utilized in applications where a selectively high temperature needs to be maintained continuously for bacterial-growth prevention and moisture control.
  1. Cavalcante PMT, Dondi M, Guarini G, Raimondo M, Baldi G, Dyes Pigment., 80(2), 226 (2009)
  2. Makita Y, Natsui T, Kimura SI, Nakata S, Kimura M, Matsuki Y, Takeuchi Y, Feng K, Tsushima M, Matsumoto T, Kurosaki T, Preparation of Nanoscale Pigment Particles; Vol. 11, 1998.
  3. Jafari M, Hassanzadeh-Tabrizi SA, Powder Technol., 266, 236 (2014)
  4. Rodriguez VM, Martinez-Verdu FM, Rico MIB, Gomis AM, Pigm. Resin Technol., 41(5), 263 (2012)
  5. Benitha VS, Jeyasubramanian K, Mala R, Hikku GS, Kumar RR, J. Coat. Technol. Res., 16(1), 59 (2019)
  6. Mastan R, Zak AK, Shahri RP, Ceram. Int., 46(7), 8582 (2020)
  7. Qi Y, Xiang B, Zhang J, Sol. Energy Mater. Sol. Cells, 172, 34 (2017)
  8. Maile FJ, Pfaff G, Reynders P, Progr. Org. Coat., 150-163, (2005).
  9. Wijewardane S, Goswami DY, A review on surface control of thermal radiation by paints and coatings for new energy applications. Renew. Sustain. Energy Rev., 1863-1873, (2012).
  10. Bao Y, Guo R, Ma J, ACS Appl. Mater. Interfaces, 12(21), 24250 (2020)
  11. Hakansson E, Kaynak A, Lin T, Nahavandi S, Jones T, Hu E, Synth. Met., 144(1), 21 (2004)
  12. Zhao Z, Chen H, Liu X, Wang Z, Zhu Y, Zhou Y, Surf. Coat. Technol., 404 (2020)
  13. Kim H, Lee S, Fibers Polym., 19(5), 965 (2018)
  14. Zhao Z, Chen H, Liu X, Liu H, Zhang D, Surf. Coat. Technol., 349, 340 (2018)
  15. Guerrero AR, Hassan N, Escobar CA, Albericio F, Kogan MJ, Araya E, Nanomed. Future Med. Ltd., 2023-2039, (2014).
  16. Wang Y, Gao Z, Han Z, Liu Y, Yang H, Akkin T, Hogan CJ, Bischof JC, Sci. Rep., 11(1) (2021)
  17. Xi J, Huang J, Wang D, Wen L, Hao J, He B, Chen J, Bai ZW, J. Phys. Chem. Lett., 12(13), 3443 (2021)
  18. Han S, Park YJ, Park EJ, Kim Y, ACS Appl. Mater. Interfaces, 11(9), 8831 (2019)
  19. Hosseini-Zori M, Taheri-Nassaj E, J. Alloy. Compd., 510(1), 83 (2011)
  20. Pishch IV, Maslennikova GN, Podbolotov KB, Karizna YA, Belyakovich IV, Science for Ceramic Production Silica Based Pigments; Vol. 68, 2011.
  21. Schwartzberg AM, Olson TY, Talley CE, Zhang JZ, J. Phys. Chem. B, 110(40), 19935 (2006)
  22. Jastrzebska AM, Kurtycz P, Olszyna AR, Jureczko J, Kunicki AR, Int. J. Appl. Ceram. Technol., 11(4), 738 (2014)
  23. Yoshioka S, Takeoka Y, ChemPhysChem, 15(11), 2209 (2014)
  24. Monshi A, Foroughi MR, Monshi MR, World J. Nano Sci. Eng., 2(3), 154 (2012)
  25. Rovani S, Santos JJ, Corio P, Fungaro DA, J. Braz. Chem. Soc., 30(7), 1524 (2019)
  26. Kang M, Kim Y, Colloids Surf. A: Physicochem. Eng. Asp., 600 (2020)
  27. Moon H, Kim Y, ACS Appl. Polym. Mater., 3(5), 2768 (2021)
  28. Roper DK, Ahn W, Hoepfner M, J. Phys. Chem. C, 111(9), 3636 (2007)
  29. Wang WN, Zhang CY, Zhang MF, Pei P, Zhou W, Zha ZB, Shao M, Qian HS, Chem. Eng. J., 381 (2020)
  30. Choi W, Park JY, Kim Y, J. Ind. Eng. Chem., 95, 120 (2021)
  31. Jiang T, He J, Sun L, Wang Y, Li Z, Wang Q, Sun Y, Wang W, Yu M, Environ. Sci. Nano, 5(5), 1161 (2018)
  32. Forghani F, den Bakker M, Liao JY, Payton AS, Futral AN, Diez-Gonzalez F, Front. Microbiol., 10 (2019)
  33. Wang JL, Li YQ, Byon YJ, Mei SG, Zhang GL, Powder Technol., 235, 303 (2013)
  34. Li YQ, Mei SG, Byon YJ, Wang JL, Zhang GL, ACS Sustainable Chem. Eng., 2(2), 318 (2014)
  35. Ye H, Li X, Deng L, Li P, Zhang T, Wang X, Hsiao BS, Ind. Eng. Chem. Res., 58(8), 3269 (2019)
  36. Kou H, Liu Z, Zhu B, Macharia DK, Ahmed S, Wu B, Zhu M, Liu X, Chen Z, Desalination, 462, 29 (2019)