화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.107, 401-409, March, 2022
Glass fiber reinforced graphite/carbon black@PES composite films for high-temperature electric heaters
E-mail:
Carbon based conductive polymer composites as electrothermal materials offers many merits in high flexibility, light weight, low cost, excellent processability, and rapid heating ability, however, the maximum working temperature is usually lower than 200 °C, hampering seriously the medium–high temperature applications. Herein, a series of rationally designed glass fiber reinforced graphite/carbon black@polyethersulfone (G/CB@PES) composites are developed to significantly promote the maximum working temperature over 300 °C. To be specific, the introduced glass fibers acted as rigid skeleton greatly enhance the mechanical strength of PES polymer matrix, thereby offering robust structural stability in high temperature working scenario. Meanwhile, glass fibers not only endow G/CB@PES composite with excellent flame-retardant ability, but also provide rapid thermal conduction channels to reduce the risk of heat accumulation and overheating. More importantly, glass fiber reinforced G/CB@PES composites as electrothermal film heaters exhibit superior electric heating performance in terms of fast temperature responsiveness, high electric heating efficiency, stable maximum working temperatures, and high electric power efficiency under the relatively low applied voltages of 3–21 V. This work provides new insights on the innovative design and facile fabrication of high working temperature electrothermal film heaters in emerging applications.
  1. Baloch KH, Voskanian N, Bronsgeest M, Cumings J, Nat. Nanotechnol., 7, 316 (2012)
  2. Janas D, Koziol KK, Nanoscale, 3037-304, (2014).
  3. Luo J, Lu HF, Zhang QC, Yao YG, Chen MH, Li QW, Carbon, 110, 343 (2016)
  4. Liu H, Tian H, Shao J, Wang Z, Li X, Wang C, Chen X, ACS Appl. Mater. Interfaces, 12, 56338 (2020)
  5. Wang JQ, Lou TJ, Wang T, Cao WW, Zhao H, Qian PF, Bao ZL, Yuan XT, Geng HZ, Ind. Eng. Chem. Res., 60, 7844 (2021)
  6. An JE, Jeong YG, Eur. Polym. J., 48, 1322 (2013)
  7. Lee BM, Jung JM, Hwang IT, Shin J, Hong SK, Jung CH, Jeong YG, Choi JH, Appl. Surf. Sci., 456, 561 (2018)
  8. Jin IS, Lee HD, Hong SI, Lee W, Jung JW, Polymer, 13 (2021)
  9. Chu Z, Jiao W, Huang Y, Ding G, Zhong X, Yan M, Zheng Y, Wang R, Adv. Mater. Interfaces, 7 (2019)
  10. Jeong YG, Jeon GW, ACS Appl. Mater. Interfaces, 5, 6527 (2013)
  11. Lei D, Ko TH, Yang JY, Li XD, Seo MK, Kim HY, Kim BS, Compos. Part B: Eng., 166, 41 (2019)
  12. Wu Q, Tong W, Chen Q, Gu B, Hou H, He S, J. Alloy. Compd., 789, 282 (2019)
  13. Zhang R, Tang P, Li J, Xu D, Bin Y, Polymer, 55, 2103 (2014)
  14. Wang W, Han C, Wang X, Zhou G, Xu M, Compos. Commun., 21 (2020)
  15. Li Z, Lin Z, Han M, Mu Y, Yu J, J. Mater. Sci., 56, 14542 (2021)
  16. El-Tantawya F, Kamadab K, Ohnabec H, Mater. Lett., 56, 565 (2002)
  17. Tian W, Zhang Y, Liu J, Cheng W, Lu J, Song L, Wang B, Hu Y, Polym. Adv. Technol., 31, 1088 (2020)
  18. Xiao Z, Sheng C, Xia Y, Yu X, Liang C, Huang H, Gan Y, Zhang J, Zhang W, J. Ind. Eng. Chem., 293-300, (2019).
  19. Huang HG, He P, Huang T, Hu SK, Xu T, Gu HY, Yang SW, Song LX, Xie XM, Ding GQ, ACS Appl. Mater. Interfaces, 11, 1239 (2019)
  20. Cheng WL, Yuan S, Song JL, Energy, 74, 447 (2014)
  21. Zhang TY, Zhao HM, Wang DY, Wang Q, Pang Y, Deng NQ, Cao HW, Yang Y, Ren TL, Nanoscale, 9, 14357 (2017)
  22. Liao Y, Tian YF, Ma XH, Zhao MJ, Qian J, Wang X, ACS Appl. Mater. Interfaces, 12, 48077 (2020)
  23. Sui D, Huang Y, Huang L, Liang JJ, Ma YF, Chen YS, Small, 7, 3186 (2011)
  24. Kwon M, Kim H, Mohanty AK, Yang J, Piao LH, Joo SW, Han JT, Han JH, Paik HJ, Adv. Mater. Technol-us.
  25. Xia Y, Yu X, Sheng C, Liang C, Huang H, Gan Y, Zhang J, Tao X, Xiao Z, Zhang W, Mater. Res. Bull., 90, 273 (2017)
  26. Wang YH, Zhou ZM, Zhang JH, Tang JY, Wu PY, Wang K, Zhao YZ, Coatings, 10 (2020)
  27. Wang F, Zhang K, Liang W, Wang Z, Yang B, Nanotechnology, 30 (2019)
  28. Yan J, Jeong YG, Compos. Sci. Technol., 106, 134 (2015)
  29. Du ZQ, Chen ZL, Xu JY, Zheng DM, Zou HC, Liu JK, Wang MX, J. Ind. Text.
  30. Sun Y, Sui X, Wang Y, Liang W, Wang F, Langmuir, 36, 14483 (2020)
  31. Park J, Jeong YG, Polymer, 59, 102 (2015)
  32. McKeen LW, Fluorinated Coat. Finishes Handbook, 45-58, (2006).
  33. Xia Y, Cai P, Liu Y, Zhu J, Guo R, Zhang W, Gan Y, Huang H, Zhang J, Liang C, He X, Xiao Z, J. Electron. Mater., 50, 3084 (2021)
  34. Glass Fiber, (accessed 5 September 2021), 2021.
  35. Tang ZH, Li YQ, Huang P, Fu YQ, Hu N, Fu SY, Compos. Commun., 23 (2021)
  36. Chen L, Zhang J, J. Appl. Polym. Sci., 138 (2021)
  37. Kolisnyk R, Korab M, Iurzhenko M, Masiuchok O, Mamunya Y, J. Appl. Polym. Sci., 138 (2021)
  38. Choi HN, Jee SH, Ko J, Kim DJ, Kim SH, Nanomaterial, 11, 904 (2021)
  39. Wang Y, Jiang H, Tao Y, Mei T, Liu Q, Liu K, Li M, Wang W, Wang D, Compos. Pt. A-Appl. Sci. Manuf., 81, 234 (2016)
  40. Souri H, Yu SJ, Yeo H, Goh M, Hwang JY, Kim SM, Ku BC, Jeong YG, You NH, RSC Adv., 6, 52509 (2016)