화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.108, 47-53, April, 2022
Analysis of efficiency variations in m-DABNA based thermally activated delayed fluorescence OLED devices
E-mail:
Recently, diboron based blue thermally activated delayed fluorescence (TADF) material, N7,N7,N13,N1 3,5,9,11,15-octaphenyl-5,9,11,15-tetrahydro-5,9,11,15-tetraaza-19b, 20b-diboradinaphtho[3,2,1-de:10,20,30-jk] pentacene-7,13-diamine (m-DABNA) has drawn attention from the researchers due to its good device performances as well as narrow full-width at half maximum (FWHM) in OLED devices. In this work, we report a detailed analysis to understand the exact reason behind the efficiency variations in m-DABNA based TADF devices using different types of host materials. Interestingly, we found that triplet exciton density of m-DABNA molecule is mainly located at the central region, so the triplet exciton energy transfer from the host material is hindered due to the presence of peripheral diphenylamine extensions. Hence, our analysis suggests that utilizing wide band gap host materials in m-DABNA based TADF devices exhibit excellent device efficiencies with the support of trap assisted emission mechanism. This study brings an in-depth understanding of efficiency variations in the m-DABNA based OLED devices.
  1. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C, Nature, 492, 234 (2012)
  2. Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C, Nat. Photon., 8, 326 (2014)
  3. Numata M, Yasuda T, Adachi C, Chem. Commun., 51, 9443 (2015)
  4. Kim M, Jeon SK, Hwang SH, Lee JY, Adv. Mater., 27, 2515 (2015)
  5. Zhang D, Cai M, Bin Z, Zhang Y, Zhang D, Duan L, Chem. Sci., 7, 3355 (2016)
  6. Hatakeyama T,Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K, Ikuta T, Adv. Mater., 28, 2777 (2016)
  7. Xu Y, Li C, Li Z, Wang Q, Cai X, Wei J, Wang Y, Angew. Chem.-Int. Edit., 59, 17442 (2020)
  8. Xu Y, Wang Q, Cai X, Li C, Wang Y, Adv. Mater., 33, 2100652 (2021)
  9. Kondo Y, Yoshiura K, Kitera S, Nishi H, Oda S, Gotoh H, Hatakeyama T, Nat Photon., 13, 678 (2019)
  10. Chung WJ, Lee KH, Jung M, Lee KM, Park HC, Eum MS, Lee JY, Adv. Opt. Mater., 9, 2100203 (2021)
  11. Ahn DH, Moon JS, Kim SW, Lee SY, Karthik D, Lee JY, Kwon JH, Org. Electron., 59, 39 (2018)
  12. Ahn DH, Kim SW, Lee H, Ko IJ, Karthik D, Lee JY, Kwon JH, Nat. Photon., 13, 540 (2019)
  13. Dos Santos PL, Ward JS, Bryce MR, Monkman AP, J. Phys. Chem. Lett., 7, 3341 (2016)
  14. Xie G, Chen D, Li X, Cai X, Li Y, Chen D, Liu K, Zhang Q, Cao Y, Su SJ, ACS Appl. Mater. Interfaces, 8, 27920 (2016)
  15. Ishimatsu R, Matsunami S, Shizu K, Adachi C, Nakano K, Imato T, J. Phys. Chem. A, 117, 5607 (2013)
  16. Liu M, Komatsu R, Cai X, Hotta K, Sato S, Liu K, Chen D, Kato Y, Sasabe H, Ohisa S, Suzuri Y, Yokoyama D, Su SJ, Kido J, Chem. Mater., 29, 8630 (2017)
  17. Kim SY, Jeong WI, Mayr C, Park YS, Kim KH, Lee JH, Moon CK, Brütting W, Kim JJ, Adv. Funct. Mater., 23, 3896 (2013)
  18. Meerheim R, Scholz S, Olthof S, Schwartz G, Reineke S, Walzer K, Leo K, J. Appl. Phys., 104 (2008)
  19. Jesuraj PJ, Hafeez H, Rhee SH, Kim DH, Song M, Kim CS, Ryu SY, ECS J. Solid State Sci. Technol., 6, 170 (2017)
  20. Zhao C, Li C, Li Y, Qiu Y, Duan L, Mater. Chem. Front., 3, 1181 (2019)
  21. Wetzelaer GAH, Kuik M, Nicolai HT, Blom PWM, Phys. Rev. B, 83 (2011)
  22. Zhang W, Jin J, Huang Z, Lv X, Zhuang S, Wang L, J. Mater. Chem. C, 5, 4636 (2017)
  23. Cai M, Zhang D, Xu J, Hong X, Zhao C, Song X, Duan L, ACS Appl. Mater. Interfaces, 11, 1096 (2018)
  24. Tang C, Bi R, Tao Y, Wang F, Cao X, Wang S, Jiang T, Zhong C, Zhang H, Huang W, Chem. Commun., 51, 1650 (2015)
  25. Masui K, Nakanotani H, Adachi C, Org. Electron., 14, 2721 (2013)
  26. Cui LS, Gillett AJ, Zhang SF, Ye H, Liu Y, Chen KX, Lin ZS, Evans EW, Myers WK, Ronson TK, Nakanotani H, Reineke S, Bredas JL, Adachi, Friend RH, Nat. Photon., 14, 636 (2020)
  27. Seo JA, Jeon SK, Gong MS, Lee JY, Noh CH, Kim SH, J. Mater. Chem. C, 3, 4640 (2015)
  28. Kang YJ, Han SH, Lee JY, J. Ind. Eng. Chem., 62, 258 (2018)
  29. Lee J, Jeong C, Batagoda T, Coburn C, Thompson ME, Forrest SR, Nat. Commun., 8 (2017)
  30. Sasabe H, Chikayasu Y, Ohisa S, Arai H, Ohsawa T, Komatsu R, Kido J, Front. Chem., 8, 427 (2020)
  31. Schrödinger, LLC, New York, 2021.
  32. Ahn DH, Jeong JH, Song J, Lee JY, Kwon JH, ACS Appl. Mater. Interfaces, 10, 10246 (2018)
  33. Braveenth R, Lee H, Park JD, Yang KJ, Hwang SJ, Naveen KR, Lampande R, Kwon JH, Adv. Funct. Mater., 31(47), 2105805 (2021)
  34. Manoj INS, Barah D, Sahoo S, Bhattacharyya J, Ray D, Synth. Met., 270 (2020)
  35. Moon YK, Jang HJ, Hwang S, Kang S, Kim S, Oh J, You Y, Adv. Mater., 33, 2003832 (2021)
  36. Song X, Zhang D, Zhang Y, Lu Y, Duan L, Adv. Opt. Mater., 8, 2000483 (2020)
  37. Bae HW, Kim GW, Lampande R, Park JH, Ko IJ, Yu HJ, Lee CY, Kwon JH, Org. Electron., 70, 1 (2019)
  38. Oda S, Kumano W, Hama T, Kawasumi R, Yoshiura K, Hatakeyama T, Angew. Chem.-Int. Edit., 60, 2882 (2021)
  39. Ito A, Stewart DJ, Knight TE, Fang Z, Brennaman MK, Meyer TJ, J. Phys. Chem. B, 117, 3428 (2013)