Journal of Industrial and Engineering Chemistry, Vol.108, 203-214, April, 2022
Microwave-assisted rapid synthesis of Cu2S:ZnIn2S4 marigold-like nanoflower heterojunctions and enhanced visible light photocatalytic hydrogen production via Pt sensitization
E-mail:,
In this work, a rapid microwave synthesis route is presented for the fabrication of morphology-controlled Cu2S: ZnIn2S4 marigold-like nanoflower heterojunction photocatalysts. The Cu-to-Zn-metal -cation (Cu: Zn) ratios were used to control the Cu2S: ZnIn2S4 heterojunction during the second step of microwave synthesis. The formation of Cu2S: ZnIn2S4 heterojunction is evidenced by XRD, TEM and XPS analyses. The optimum electronic interaction aids to stimulate electron-hole charge separation kinetics and promote the solar hydrogen (H2) evolution performance in microwave-assisted 5 mol.% Cu2S:ZnIn2S4 (Cu2S:ZIS–5) heterojunction. Benefiting from the synergy between marigold-like morphology, heterojunction, and Pt loading, the optimum Pt loaded Cu2S: ZIS–5 marigold nanoflowers (Pt/Cu2S:ZIS–5) exhibited the 862 mmol of photocatalytic H2 production after 3 h under visible light irradiation (≥420 nm). The time-resolved PL spectrum showed more than double carrier lifetime in Pt/Cu2S: ZIS–5 heterojunction (45 ns) than that of Pt/ZIS–15 (20 ns). These visible light-responsive Pt/Cu2S:ZIS marigold-like nanoflower heterojunction shows promising photostability, which would open new opportunities for the development of highly efficient ternary metal-chalcogenide photocatalysts for solar hydrogen generation.
Keywords:ZnIn2S4 marigold;Microwave synthesis;Cu2S:ZIS marigold-like nanoflower;heterojunction;Solar Hydrogen generation;Photostability
- Razaghi P, Dashtian K, Yousefi F, Karimi R, Ghaedi M, J. Clean Prod., 313, 127916 (2021)
- Qin KY, Li H, Lu J, Feng Y, Meng F, Ma C, Yan Y, Meng M, Appl. Catal. B: Environ., 277, 119254 (2020)
- Ding N, Zhang L, Zhang H, Shi J, Wu H, Luo Y, Li D, Meng Q, Catal. Commun., 100, 173 (2017)
- Li Z, Luo W, Zhang M, Feng J, Zou Z, Energy Environ. Sci., 6, 347 (2013)
- Yang J, Yan H, Wang X, Wen F, Wang Z, Fan D, Shi J, Li C, J. Catal., 266, 165 (2009)
- Li CH, Li MC, Liu SP, Jamison AC, Lee D, Lee TRT, Lee C, ACS Appl. Mater. Interfaces, 8, 9152 (2016)
- Shen S, Zhao L, Zhou Z, Guo L, J. Phys. Chem. C, 112, 16148 (2008)
- Li G, Xuanxuan H, Zhang K, Zhang Y, Zhao Q, Wang D, Fu F, Catalysts, 9, 729 (2019)
- Mosleh S, Rezaei K, Dashtian K, Salehi Z, J. Hazard. Mater., 409, 124478 (2021)
- Bahmani M, Dashtian K, Mowla D, Esmaeilzadeh F, Ghaedi M, J. Hazard. Mater., 393, 122360 (2020)
- Li X, Wang X, Zhu J, Li Y, Zhao J, Li F, Chem. Eng. J., 353, 15 (2018)
- Yin T, Long L, Tang X, Qiu M, Liang W, Cao R, Zhang Q, Wang D, Zhang H, Adv. Sci., 7, 2001431 (2020)
- Yang X, Xu J, Wong T, Yang Q, Lee CS, Phys. Chem. Chem. Phys., 15, 12688 (2013)
- Liu F, Huang C, Liu CX, Shi R, Chen Y, Chem.-Eur. J., 26, 4449 (2020)
- Rashid M, Mowla D, Esmaeilzadeh F, Dashtian K, Bahmani M, J. Clean Prod., 317, 128471 (2021)
- Bard AJ, J. Photochem., 10, 59 (1979)
- Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K, Nat. Mater., 5, 782 (2006)
- Mao L, Cai X, Yang S, Han K, Zhang J, Appl. Catal. B: Environ., 242, 441 (2019)
- Li Z, Wang X, Tian W, Meng A, Yang L, ACS Sustainable Chem. Eng., 7, 20190 (2019)
- Jin J, Cao Y, Feng T, Li Y, Wang R, Zhao K, Wang W, Dong B, Cao L, Catal. Sci. Technol., 11, 2753 (2021)
- Pudkon W, Kaowphong S, Pattisson S, Miedziak PJ, Bahruji H, Davies TE, Morgan DJ, Hutchings GJ, Catal. Sci. Technol., 9, 5698 (2019)
- Swain G, Sultana S, Moma J, Parida K, Inorg. Chem., 57, 10059 (2018)
- Liang Y, Shao M, Liu L, McEvoy JG, Hu J, Cui W, Catal. Commun., 46, 128 (2014)
- Wu Y, Wadia C, Ma W, Sadtler B, Alivisatos AP, Nano Lett., 8, 2551 (2008)
- Choi HG, Jung YH, Kim DK, J. Am. Ceram. Soc., 88, 1684 (2005)
- Hayes BL, Microwave Synthesis: Chemistry at the Speed of Light, CEM Publishing, Matthews NC, USA, 2002.
- Zhang H, Noh WY, Li F, Kim JH, Jeong HY, Lee JS, Adv. Funct. Mater., 29, 1805737 (2019)
- Jeong I, Mahadik MA, Kim S, Pathan HM, Chae WS, Chung HS, Kong GW, Choi SH, Jang JS, Chem. Eng. J., 390, 124504 (2020)
- An GW, Mahadik MA, Piao G, Chae WS, Park H, Cho M, Chung HS, Jang JS, Appl. Surf. Sci., 480, 1 (2019)
- Jung JY, Yang WG, Hong SH, Kim GH, Hwang K, Chae WS, Appl. Surf. Sci., 529, 147139 (2020)
- Ma G, Shang C, Jin M, Shui L, Meng Q, Zhang Y, Zhang Z, Liao H, Li M, Chen Z, Yuan M, Wang X, Wang C, Zhou G, J. Mater. Chem. C, 8, 2693 (2020)
- Peng S, Li L, Wu Y, Jia L, Tian LL, Srinivasan M, Ramakrishna S, Yan Q, Mhaisalkar SG, CrystEngComm, 15, 1922 (2013)
- Chen G, Ding N, Li F, Fan Y, Luo Y, Li D, Meng Q, Appl. Catal. B: Environ., 160-161, 614 (2014)
- Tateishi I, Furukawa M, Katsumata H, Kaneco S, Catalysts, 9, 681 (2019)
- Su Y, Zhang Z, Liu H, Wang Y, Appl. Catal. B: Environ., 200, 448 (2017)
- Wang S, Guan B, Lou X, J. Am. Chem. Soc., 140, 5037 (2018)
- Zhang Z, Liu K, Feng Z, Bao Y, Dong B, Sci. Rep., 6, 19221 (2016)
- Mai NT, Thuy TT, Mott DM, Maenosono S, CrystEngComm, 15, 6606 (2013)
- Caglar Y, J. Alloy. Compd., 560, 181 (2013)
- Wang Y, Ai X, Miller D, Rice P, Topuria T, Krupp L, Kellock A, Song Q, CrystEngComm, 4, 7560 (2012)
- Moudler JF, Stickle WF, Sobol PE, Bomben KD, Handbook of X-Ray Photoelectron Spectroscopy; Perkin Elmer Eden Prairie, MN (1992).
- Li S, Zhang Z, Yan L, Jiang S, Zhu N, Li J, Li W, Yu S, J. Supercrit. Fluids, 123, 11 (2017)
- Zhang S, Gao H, Liu X, Huang Y, Xu X, Alharbi NS, Hayat T, Li J, ACS Appl. Mater. Interfaces, 8, 35138 (2016)
- Wang Y, Lu Y, Zhan W, Xie Z, Kuang Q, Zheng L, J. Mater. Chem. A, 3, 12796 (2015)
- Lin YG, Hsu YK, Chuang CJ, Lin YC, Chen YC, J. Colloid Interface Sci., 64, 66 (2016)
- Van Der Heide PAW, J. Electron Spectrosc., 164, 8 (2008)
- Svintsitskiy DA, Chupakhin AP, Slavinskaya EM, J. Mol. Catal. A-Chem., 368, 95 (2013)
- Zhang YC, Qiao T, Hu XY, J. Cryst. Growth, 268, 64 (2004)
- Chai B, Peng T, Zeng P, Zhang X, Dalton Trans., 41, 1179 (2012)
- Muthukumaran S, J. Mater. Sci.: Mater. Electron., 27, 2042 (2016)
- Khan A, Danish M, Alam U, Zafar S, Muneer M, ACS Omega, 5, 8188 (2020)
- Mahadik MA, Shinde PS, Cho M, Jang JS, Appl. Catal. B: Environ., 184, 337 (2016)
- Muhmood T, Xia M, Lei W, Wang F, Appl. Catal. B: Environ., 238, 568 (2018)
- Wang S, Wang Y, Zhang SL, Zang SQ, Lou XW, Adv. Mater., 31, 1903404 (2019)
- She H, Sun Y, Li S, Huang J, Wang L, Zhu G, Wang Q, Appl. Catal. B: Environ., 245, 439 (2019)
- Liu C, Qiu Y, Wang K, Wang Q, Liang ZC, Adv. Mater. Interfaces, 4, 1700681 (2017)
- Kruger J, Plass R, Gratzel M, Cameron PJ, Peter LM, J. Phys. Chem. B, 107, 7536 (2003)
- Kim H, Monllor-Satoca D, Kim W, Choi W, Energy Environ. Sci., 8, 247 (2015)
- Shinde PS, Choi SH, Kim YS, Ryu JH, Jang JS, PCCP, 18, 2495 (2016)
- Li M, Su J, Guo L, Int. J. Hydrog. Energy, 33, 2891 (2008)
- Fu S, Feng W, Jia Y, Deng T, Wang W, Zhang G, Fu J, Int. J. Hydrog. Energy, 46, 11544 (2021)
- Mirbagheri N, Wang D, Peng C, Wang J, Huang Q, Fan C, Ferapontova EE, ACS Catal., 4, 2006 (2014)
- Xiong M, Chai B, Yan J, Fan G, Song G, Appl. Surf. Sci., 514, 145965 (2020)
- Patil RP, Mahadik MA, Chae WS, Choi SH, Jang JS, Appl. Surf. Sci., 539, 148267 (2021)
- He B, Wang Y, Liu X, Li Y, Hu X, Huang J, Yu Y, Shu Z, Li Z, Zhao Y, J. Mater. Chem. A, 7, 6747 (2019)
- Jiang LB, Yuan XZ, Zeng GM, Liang J, Chen X, Yu H, Wang H, Wu Z, Zhang J, Xiong T, Appl. Catal. B: Environ., 227, 376 (2018)
- Tang M, Ao Y, Wang P, Wang C, J. Hazard. Mater., 387, 1217132 (2020)
- Braun S, Salaneck WR, Fahlman M, Adv. Mater., 21, 1450 (2009)
- Kim M, Razzaq A, Kim YK, Kim S, In SI, RSC Adv., 4, 51286 (2014)
- Abdulrazzak FH, Hussein FH, Alkaim AF, Ivanova I, Emelinee AV, Bahnemann DW, Photochem. Photobiol. Sci., 15, 1347 (2016)