화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.108, 344-355, April, 2022
Superior adsorption of Re(VII) by anionic imprinted chitosan-silica composite: Adsorption performance, selectivity and mechanism study
E-mail:
In this study, a three-dimensional chitosan/mesoporous silica composite material (I-CTS-KIT-6) was successfully synthesized by one-step method using ion imprinting technology. To overcome the enormous cost problem, MoO4 2- with similar radius to ReO4 - was selected as template ion. In addition, the adsorbent was prepared by using glutaraldehyde and chitosan as crosslinking agents and monomers and TEOS as silicon source in the process of imprinting. The effects of pH values, mass of chitosan and template ion, contact time, temperature and concentration on Re(VII) adsorption were studied. The results revealed that the I-CTS-KIT-6 has the saturated adsorption capacity of 368.8 mg g-1 at pH 3.0 for Re (VII), and the adsorption process corresponded to Langmuir isotherm and pseudo-second-order kinetics. Especially, the I-CTS-KIT-6 has higher selectivity for rhenium ions compared with the non-imprinted adsorbent. To verify the adsorption mechanism, density functional theory (DFT) was adopted to analyze the binding patterns of Re(VII) with the I-CTS-KIT-6. The test analysis and calculation results further mentioned that the adsorption mechanism is mainly three N atoms of I-CTS-KIT-6 coordinated with three oxygen atoms of ReO4 -, which provides the theoretical foundations and explanations for adsorption process.
  1. Wang Y, Wang CY, Chin. Chem. Lett., 29(3), 345 (2018)
  2. Liao RQ, Liu H, Li CY, J. Rock, 1, 55 (2020)
  3. Wang YX, Peng YQ, Wang X, Liaoning Chem., 5, 411 (2019)
  4. Zhang BO, Liu HZ, Wang W, Gao ZG, Cao YH, Hydrometallurgy, 173, 50 (2017)
  5. Bai ZH, Zhang JF, China Met. Bull., 7, 5 (2019)
  6. Chen XF, Chen XF, Li N, China’s Min., 28, 10 (2019)
  7. Guo XY, Ma ZC, Li D, Yu DW, J. Mol. Liq., 297, 111901 (2020)
  8. Li J, Zhu L, Xiao CL, Chen LH, Chai ZF, Wang S, Radiochim. Acta, 106(7), 581 (2018)
  9. Li D, Shustova NB, Martin CR, Taylor-Pashow K, Seaman JC, Kaplan DI, et al., J. Environ. Radioact., 222, 106372 (2020)
  10. Kang K, Dai X, Shen N, Xie R, Zhang X, Lei L, et al., Chem.-Eur. J., 27(18), 5632 (2021)
  11. Hong T, Liu MB, Ma J, Yang G, Li LB, Mumford KA, et al., Sep. Purif. Technol., 236, 116281 (2020)
  12. Srivastava RR, Lee JC, Kim MS, J. Chem. Technol. Biotechnol., 90(10), 1752 (2015)
  13. Xiong Y, Cui X, Zhang P, Wang Y, Lou Z, Shan W, ACS Sustain. Chem. Eng., 5(1), 1010 (2017)
  14. Shan W, Wang D, Zhang Z, Lou Z, Xiong Y, Fan Y, J. Taiwan Inst. Chem. Eng., 100, 277 (2019)
  15. Shan W, Zhang D, Wang X, Wang D, Xing Z, Xiong Y, et al., Microporous Mesoporous Mater., 278, 44 (2019)
  16. Zelenák V, Skrínska M, Siperstein FR, Patti A, Appl. Surf. Sci., 476, 886 (2019)
  17. Wang B, Zhou Y, Li L, Xu H, Sun Y, Wang YI, J. Hazard. Mater., 345, 76 (2018)
  18. Wang J, Ma R, Gu PC, J. Phys. Chem. Solids, 147, 109629 (2020)
  19. Sahariah P, Másson M, Biomacromolecules, 18(11), 3846 (2017)
  20. Wang Y, Dang Q, Liu C, Yu D, Pu X, Wang Q, et al., ACS Appl. Mater. Interfaces, 10(46), 40302 (2018)
  21. Anirudhan TS, Lekshmi GS, Shainy F, J. Colloid Interface Sci., 534, 248 (2019)
  22. Sadjadi S, Koohestani F, Int. J. Biol. Macromol., 147, 399 (2020)
  23. Budnyak TM, Pylypchuk IV, Tertykh VA, Yanovska ES, Kolodynska D, Nanoscale Res. Lett., 10(1) (2015)
  24. Chen D, Hu B, Huang C, Talanta, 78(2), 491 (2009)
  25. Gao Q, Zhu H, Luo WJ, Wang S, Zhou CG, Microporous Mesoporous Mater., 193, 15 (2014)
  26. Ramasamy DL, Puhakka V, Iftekhar S, Wojtus A, Repo E, Hammouda SB, et al., J. Hazard. Mater., 348, 84 (2018)
  27. Ahamed M, Mbianda XY, Mulaba-Bafubiandi AF, Marjanovic L, React. Funct. Polym., 73(3), 474 (2013)