Journal of Industrial and Engineering Chemistry, Vol.108, 466-475, April, 2022
High-effective generation of H2O2 by oxygen reduction utilizing organic acid anodized graphite felt as cathode
E-mail:
Achieving high catalytic performance with the lowest cost possible cathode material is critical for electrocatalytic synthesis of H2O2 by oxygen reduction reaction. In this work, we describe a method of preparing highly active yet stable graphite felt electrocatalysts containing ultrahigh-loading oxygen content by using organic acid anodic modification. The results show that modified graphite felt surface was more hydrophilic and introduced a large amount of defect sites and oxygen-containing groups. Moreover, the influence of mass oxalic/citric acid ratio and oxidation time of graphite felt cathode were investigated. As a result, H2O2 electrogeneration was 1.6 times as much as that of virgin graphite felt counterpart at the mass oxalic/citric acid ratio of 2:1 oxidation for 40 min. However, overoxidation also impaired the electrical production of H2O2 due to decarboxylation. Finally, the effect of cathode potential and reaction pH on graphite felt cathode was optimized. As for the modified graphite felt, the maximum accumulation rate of H2O2 reached 4.5 mg h-1 cm-2 at the conditions of - 0.85 V (SCE), 0.4 - min-1 O2 flow rate and pH = 3. In addition, it kept a stable performance for electrochemical generation of H2O2 during 8 cycles.
Keywords:Organic acid anodic modification;Graphite felt;H2O2 electrocatalytic synthesis;Oxygen reduction;Oxygen-containing group
- Zhao Q, Li N, Liao CM, Tian LL, An JK, Wang X, J. Hazard. Mater. Lett., 2 (2021)
- Yu FK, Wang Y, Ma HR, J. Electroanal. Chem., 838, 57 (2019)
- Zhu YS, Qiu S, Deng FX, Ma F, Zheng YS, Sci. Total Environ., 722 (2020)
- Liu JM, Ji ZY, Shi YB, Yuan P, Guo XF, Zhao LM, Li SM, Li H, Yuan JS, Environ. Pollut., 266 (2020)
- Qi HQ, Sun XP, Sun ZR, Chem. Eng. J., 403 (2021)
- Song DB, Li JF, Wang ZY, Zhao C, Appl. Surf. Sci., 532 (2020)
- Salmeron I, Oller I, Plakas KV, Malato S, Chemosphere, 275 (2021)
- Yamanaka I, Hashimoto T, Ichihashi R, Otsuka K, Electrochim. Acta, 53, 4824 (2008)
- Martin JMC, Brieva GB, Fierro JLG, Angew. Chem.-Int. Edit., 45, 6962 (2006)
- Zhou W, Rajic L, Chen L, Kou KK, Ding YN, Meng XX, Wang Y, Mulaw B, Gao JH, Qin YK, Alshawabkeh AN, Electrochim. Acta, 296, 317 (2019)
- Kim HW, Bukas VJ, Park H, Park S, Diederichsen KM, Lim J, Cho YH, Kim J, Kim W, Han TH, Voss J, Luntz AC, McCloskey BD, ACS Catal., 10, 852 (2020)
- Qi XQ, Yang TT, Li PB, Wei ZD, DFT study on ORR catalyzed by bimetallic Pt-skin metals over substrates of Ir, Pd and Au, Nano Mater, Sci, 2021.
- Yamazaki SI, Asahi M, Taguchi N, Ioroi T, J. Electroanal. Chem., 848 (2019)
- Qin ZM, Zhao JX, J. Colloid Interface Sci., 605, 155 (2022)
- Verma CJ, Kumar A, Ojha RP, Prakash R, J. Electroanal. Chem., 861 (2020)
- Zhang YM, Zhang DD, Zhou LC, Zhao YL, Chen J, Chen Z, Wang F, Chem. Eng. J., 336, 690 (2018)
- Truong TNP, Petenzi T, Ranjan C, Randriamahazaka H, Ghilane J, Carbon, 130, 544 (2018)
- Xue YD, Zheng SL, Zhang Y, Jin W, Electrochim. Acta, 252, 245 (2017)
- Yu FK, Tao L, Cao TY, Environ. Pollut., 255 (2019)
- Tian SC, Tu YM, Chen JJ, Shao GY, Zhou ZY, Ren ZQ, Sep. Purif. Technol., 279 (2021)
- Mmako HK, Maubane-Nkadimeng MS, Maboya WK, Diam. Relat. Mat., 116 (2021)
- Liu YM, Quan X, Fan XF, Wang H, Chen S, Angew. Chem.-Int. Edit., 127, 6941 (2015)
- Kharangarh PR, Gupta V, Singh A, Bhardwaj P, Grace AN, Diam. Relat. Mat., 107 (2020)
- Zhao K, Su Y, Quan X, Liu YM, Chen S, Yu HT, J. Catal., 357, 118 (2018)
- Huang AQ, Zhi D, Zhou YY, Environ. Pollut., 286 (2021)
- Ou B, Wang JX, Wu Y, Zhao S, Wang Z, Chemosphere, 235, 49 (2019)
- Zhou L, Zhou MH, Hu ZX, Bi ZH, Serrano KG, Electrochim. Acta, 140, 376 (2014)
- Iglesias D, Giuliani A, Melchionna M, Marchesan S, Criado A, Nasi L, Bevilacqua M, Tavagnacco C, Vizza F, Prato M, Fornasiero P, Chem., 4, 1 (2017)
- Xu H, Zhang Z, Guo HK, Lin XY, Li N, Xu WJ, J. Taiw. Institu. Chem. Eng., 125, 387 (2021)
- Xu H, Guo HK, Chai CS, Li N, Lin XY, Xu WJ, Chemosphere, 286 (2022)
- Zhou J, An XQ, Lan HC, Liu HJ, Qu JH, Appl. Surf. Sci., 509 (2020)
- Li JG, Wei HY, Zhao K, Wang MF, Chen DC, Chen M, Thin Solid Films, 713 (2020)
- Huang HL, Han CL, Wang GW, Feng CH, Electro. Acta, 259, 637 (2018)
- Le TXH, Charmette C, Bechelany M, Cretin M, Electrochim. Acta, 188, 378 (2016)
- Yu XM, Zhou MH, Ren GB, Ma L, Chem. Eng. J., 263, 92 (2015)
- Kharangarh PR, Umapathy S, Singh G, Appl. Surf. Sci., 449, 363 (2018)
- Gautam S, Shandilya P, Priya B, Singh VP, Raizada P, Rai R, Valente MA, Singh P, Sep. Purif. Technol., 172, 498 (2017)
- Kharangarh PR, Umapathy S, Singh G, J. Solid State Chem. Technol., 7, M29 (2018)
- Kharangarh PR, Umapathy S, Singh G, J. Appl. Phys., 122 (2017)
- He HH, Jiang B, Yuan JJ, Liu YJ, Bi XJ, Xin SS, J. Colloid Interface Sci., 533, 471 (2019)
- Qin MC, Fan SY, Wang L, Gan GQ, Wang XY, Cheng J, Hao ZP, Li XY, J. Colloid Interface Sci., 562, 540 (2020)
- Lu ZY, Chen GX, Siahrostami S, Chen ZH, Liu K, Xie J, Liao L, Wu T, Lin DC, Liu YY, Jaramillo TF, Norskov JK, Cui Y, Nat. Catal., 1, 156 (2018)
- Zhou L, Zhou MH, Zhang C, Jiang YH, Bi ZH, Yang J, Chem. Eng. J., 233, 185 (2013)
- Yu FK, Wang Y, Ma HR, J. Electroanal. Chem., 838, 57 (2019)
- Sheng Y, Yue Z, Wang X, Rui W, Tang T, Electrochim. Acta, 133, 414 (2014)
- Hsiao YL, Nobe K, Chem. Eng. Commun., 126, 97 (1993)
- Sheng Y, Song S, Wang X, Song L, Wang C, Sun H, Niu X, Electrochim. Acta, 56, 8651 (2011)
- Ozcan A, Sahin Y, Koparal AS, Oturan MA, J. Electroanal. Chem., 616, 71 (2008)
- Zhou L, Hu ZX, Zhang C, Bi ZH, Jin T, Zhou MH, Sep. Purif. Technol., 111, 131 (2013)
- Li KQ, Liu JM, Li J, Wan ZQ, Chemosphere, 193, 800 (2018)