화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.5, 1165-1181, May, 2022
Dynamic behavior of an ellipsoidal bubble contaminated by surfactant near a vertical wall
E-mail:,
Adding a small amount of surfactant to gas-liquid two-phase flow can markedly change bubble behavior, which has crucial application value in nuclear energy, petrochemical, chemical, and environmental engineering. In this paper, the dynamic behavior of a single ellipsoidal bubble (Re~800) contaminated by surfactant rising near a vertical wall in stagnant liquid is studied using the shadow method. The effects of different concentrations of sodium dodecyl sulfate solution (100 ppm, 400 ppm, 800 ppm) and initial dimensionless distances on bubble dynamics were compared. The dynamic parameters, shape oscillation, force, and energy of the bubble were analyzed. The results show that the critical initial dimensionless distance at which the collision occurs is decreased due to a dimensionless distance change from 3.3 to 0.23, accelerating the transition from zigzag to spiral movement. Transverse movement of the contaminated bubble is restrained. Because of the Marangoni effect caused by the surfactant, the boundary condition changes from zero shear to non-zero shear, resulting in a decrease in velocity and an increase in the drag coefficient. As the surfactant concentration increases, the lift coefficient does not significantly change with concentration variations. The influences of the wall effect on velocity and drag gradually weaken. Comparing free-rising and collision conditions, the aspect ratio of the contaminated bubble is distinct from the regularity of a clean bubble. The surfactant also changes the wall-normal velocity frequency and symmetrical shape frequency and inhibits energy conversion during collision.
  1. Tripathi MK, Sahu KC, Govindarajan R, Nat. Commun., 6, 1 (2015)
  2. Takagi S, Matsumoto Y, Annu. Rev. Fluid Mech., 43, 1 (2011)
  3. Ahmed Z, Izbassarov D, Lu J, Tryggvason G, Muradoglu M, Tammisola O, Int. J. Multiph. Flow, 126, 1 (2020)
  4. Muradoglu M, Tryggvason G, J. Comput. Phys., 274, 1 (2014)
  5. Stone HA, Annu. Rev. Fluid Mech., 26, 1 (1994)
  6. Hosokawa S, Hayashi K, Tomiyama A, Int. J. Multiph. Flow, 97, 1 (2017)
  7. Hosokawa S, Hayashi K, Tomiyama A, Exp. Therm. Fluid Sci., 96, 1 (2018)
  8. Takagi S, Matsumoto Y, Annu. Rev. Fluid Mech., 43, 1 (2011)
  9. Fukuta M, Takagi S, Matsumoto Y, Phys. Fluids, 20, 4 (2008)
  10. Tagawa Y, Takagi S, Matsumoto Y, J. Fluid Mech., 738, 1 (2014)
  11. Rodrigue D, De Kee D, Fong CCM, J. Non-Newton. Fluid Mech., 66, 1 (1996)
  12. Tasoglu S, Demirci U, Muradoglu M, Phys. Fluids, 20, 4 (2008)
  13. Cuenot B, Magnaudet J, Spennato B, J. Fluid Mech., 339, 25 (1997)
  14. Fei Y, Pang M, Int. J. Heat Mass Transf., 121, 1 (2018)
  15. Raymond F, Rosant JM, Chem. Eng. Sci., 55, 5 (2000)
  16. Tzounakos A, Karamanev DG, Margaritis A, Bergougnou MA, Ind. Eng. Chem. Res., 43, 18 (2004)
  17. Aoyama S, Hayashi K, Hosokawa S, Tomiyama A, Exp. Therm. Fluid Sci., 96, 1 (2018)
  18. Clift R, Grace JR, Weber ME, Bubbles, drops and particles, Academic Press, New York (1978).
  19. De Vries AWG, Biesheuvel A, Van Wijngaarden L, Int. J. Multiph. Flow, 28, 11 (2002)
  20. Takemura F, Takagi S, Magnaudet J, Matsumoto Y, J. Fluid Mech., 461, 1 (2002)
  21. Takemura F, Magnaudet J, J. Fluid Mech., 495, 1 (2003)
  22. Sugiyama K, Takemura F, J. Fluid Mech., 662, 1 (2010)
  23. Sugioka K, Tsukada T, Int. J. Multiph. Flow, 71, 32 (2015)
  24. Zaruba A, Lucas D, Prasser HM, Höhne T, Chem. Eng. Sci., 62, 6 (2007)
  25. Jeong H, Park H, J. Fluid Mech., 771, 564 (2015)
  26. Chen Y, Tu C, Yang Q, Wang Y, Bao F, Exp. Therm. Fluid Sci., 120, 110235 (2021)
  27. Zhang J, Ni MJ, J. Fluid Mech., 828, 1 (2017)
  28. Tomiyama A, Celata GP, Hosokawa S, Yoshida S, Int. J. Multiph. Flow, 28, 9 (2002)
  29. Busciglio A, Vella G, Micale G, Rizzuti L, Chem. Eng. J., 140, 1 (2008)
  30. Celata GP, D’Annibale F, Di Marco P, Memoli G, Tomiyama A, Exp. Therm. Fluid Sci., 31, 6 (2007)
  31. Zenit R, Magnaudet J, Int. J. Multiph. Flow, 35, 2 (2009)
  32. Lee J, Park H, Int. J. Multiph. Flow, 91, 1 (2017)
  33. Huang J, Saito T, Chem. Eng. Sci., 170, 105 (2017)
  34. Figueroa-Espinoza B, Zenit R, Legendre D, J. Fluid Mech., 616, 419 (2008)
  35. Veldhuis C, Biesheuvel A, Van Wijngaarden L, Phys. Fluids, 20, 4 (2008)
  36. Fdhila RB, Duineveld PC, Phys. Fluids, 8, 2 (1996)
  37. Lunde K, Perkins RJ, Appl. Sci. Res., 58, 387 (1998)
  38. Magnaudet J, Eames I, Annu. Rev. Fluid Mech., 32, 1 (2000)
  39. Mougin G, Magnaudet J, Int. J. Multiph. Flow, 28, 11 (2002)
  40. Shew WL, Ponect S, Pinton JF, J. Fluid Mech., 569, 51 (2006)
  41. Kusuno H, Yamamoto H, Sanada T, Phys. Fluids, 31, 7 (2019)
  42. Moctezuma MF, Lima-Ochoterena R, Zenit R, Phys. Fluids, 17, 9 (2005)
  43. Figueroa-Espinoza B, Zenit R, Legendre D, J. Fluid Mech., 616, 1 (2008)
  44. Feng J, Bolotnov IA, Int. J. Multiph. Flow, 99, 1 (2018)
  45. Hayashi K, Tomiyama A, Int. J. Multiph. Flow, 99, 1 (2018)