화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.4, 997-1003, April, 2022
Enhanced production of biosurfactants through genetic engineering of Pseudozyma sp. SY16
E-mail:,
Mannosylerythritol lipids (MELs) are natural glycolipids that possess biosurfactant properties and are abundantly produced by Pseudozyma sp. Due to their specific characteristics, such as biodegradability and low toxicity, MELs have attracted significant interest as an alternative to petroleum-based surfactants in medical and cosmetic fields. The present study describes a novel expression system and optimal transformation conditions of Pseudozyma sp. SY16 for producing MELs. The hygromycin resistance gene under the control of Deinococcus radiodurans-derived Kat1 promoter was used as selection marker and the superfolder green fluorescent protein under the control of the yeast glyceraldehyde- 3-phosphate dehydrogenase promoter was used for confirming successful expression. Using this expression system, several transformants overexpressing genes related to MEL production, including emt1, mmf1, and mat1, were generated. Among them, MMF1-2 strain exhibited an MEL yield of 27.9 g/L, which was 31.6% higher than that of the wild-type strain. Altogether, this study demonstrates that engineered yeast strains hold potential for large-scale production of MELs.
  1. Sar P, Ghosh A, Scarso A, Saha B, Res. Chem. Intermediat., 45, 6021 (2019)
  2. Jardak K, Drogui P, Daghrir R, Environ. Sci. Pollut. Res., 23, 3195 (2016)
  3. Singh P, Patil Y, Rale V, J. Appl. Microbiol., 126, 2 (2019)
  4. Kitamoto D, Isoda H, Nakahara T, J. Biosci. Bioeng., 94, 187 (2002)
  5. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS, Int. J. Mol. Sci., 12, 633 (2011)
  6. Salam JA, Das N, J. Microbiol. Biotechnol., 23, 1598 (2013)
  7. Singh P, Cameotra SS, Trends Biotechnol., 22, 142 (2004)
  8. Arutchelvi JI, Bhaduri S, Uppara PV, Doble M, J. Ind. Microbiol. Biotechnol., 35, 1559 (2008)
  9. Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P, Curr. Sci., 94, 736 (2008)
  10. Bae IH, Lee SH, Oh S, Choi H, Marinho PA, Yoo JW, Ko JY, Lee ES, Lee TR, Lee CS, Kim DY, Korean J. Physiol. Pharmacol., 23, 113 (2019)
  11. Prelich G, Genetics, 190, 841 (2012)
  12. Hewald S, Linne U, Scherer M, Marahiel MA, Kämper J, Bölker M, Appl. Environ. Microbiol., 72, 5469 (2006)
  13. Wada K, Koike H, Fujii T, Morita T, PLoS One, 12, e0227295 (2020)
  14. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F, Anal. Chem., 28, 350 (1956)
  15. Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS, Nat. Biotechnol., 24, 79 (2006)
  16. Bitter GA, Egan KM, Gene, 32, 263 (1984)
  17. Avis TJ, Anguenot R, Neveu B, Bolduc S, Zhao Y, Cheng Y, Labbé C, Belzile F, Bélanger RR, Biosci. Biotechnol. Biochem., 72, 456 (2008)
  18. Li A, Liu Z, Li Q, Yu L, Wang D, Deng X, FEMS Yeast Res., 8, 6 (2008)
  19. Hopple JS, Vilgalys R, Mol. Phylogenet. Evol., 13, 1 (1999)
  20. Warner JR, Trends Biochem. Sci., 24, 437 (1999)
  21. Maier T, Güell M, Serrano L, Febs Lett., 583, 3966 (2009)
  22. Rosano GL, Ceccarelli EA, Front. Microbiol., 5, 172 (2014)