화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.4, 1028-1035, April, 2022
Influence of the sorption pressure and K2CO3 loading of a MgO-based sorbent for application to the SEWGS process
E-mail:,
MgO-based sorbents were prepared by impregnation with K2CO3 at different loadings. This study examined the CO2 absorption and regeneration properties of MgO-based sorbents at various pressures. The CO2 capture capacity of the PMI-30 sorbent increased to 204.4mg CO2/g sorbent with increasing absorption pressure through CO2 absorption by MgO itself and K2CO3 by generating structures, such as MgCO3·3H2O and K2Mg(CO3)2. However, no KHCO3 phase was observed after CO2 absorption at 1, 10, and 20 atm. The CO2 capture capacity of the MgO and PMI-10, 20, 30, and 40 sorbents was the 94.6, 129.9, 156.6, 204.4, and 239.4mg CO2/g sorbent, respectively. The CO2 capture capacity of MgO in the PMI sorbent was relatively constant regardless of the decreasing MgO content and increasing K2CO3 content. The CO2 absorption ability of MgO was calculated by substracting theoretical CO2 capture capacity of K2CO3 from the total capacity of sorbents. The TPD experiment performed at 1 atm after CO2 absorption at 20 atm showed that the regeneration temperature of the PMI sorbents differed according to the K2CO3 loading.
  1. Notz R, Tönnies I, McCann N, Scheffknecht G, Hasse H, Chem. Eng. Technol., 34, 163 (2011)
  2. Lee SC, Kwon YM, Jung SY, Lee JB, Ryu CK, Yi CK, Kim JC, Fuel, 104, 882 (2013)
  3. Yong Z, Mata V, Rodrigues AE, Sep. Purif. Technol., 26, 195 (2002)
  4. Lu H, Reddy EP, Smirniotis PG, Ind. Eng. Chem. Res., 45, 39449 (2006)
  5. Wu SF, Li QH, Kim JN, Yi KB, Ind. Eng. Chem. Res., 47, 180 (2008)
  6. Li L, King DL, Nie Z, Li XS, Howard C, Energy Fuels, 24, 3698 (2010)
  7. Koirala R, Gunugunri KR, Pratsinis SE, Smirniotis PG, J. Phys. Chem. C, 115, 24804 (2011)
  8. Mastin J, Arada A, Meyer J, Energy Procedia, 4, 1184 (2011)
  9. Zhou Z, Qi Y, Xie M, Cheng Z, Yuan W, Chem. Eng. Sci., 74, 172 (1996)
  10. Valverde JM, J. Mater. Chem. A, 1, 447 (2013)
  11. Pannocchia G, Puccini M, Seggiani M, Vitolo S, Ind. Eng. Chem. Res., 46, 6696 (2007)
  12. Choi SH, Drese JH, Jones CW, ChemSusChem., 2, 796 (2009)
  13. Guo L, Wang X, Zhong C, Li L, Appl. Surf. Sci., 257, 8106 (2011)
  14. Lee JM, Min YJ, Lee KB, Jeon SG, Na JG, Ryu HJ, Langmuir, 26, 18788 (2010)
  15. Wang Q, Luo J, Zhong Z, Borgna A, Energy Environ. Sci., 4, 42 (2011)
  16. Maroño M, Torreiro Y, Gutierrez L, Int. J. Greenhouse Gas Control, 14, 183 (2013)
  17. Siriwardane RV, Steven RW Jr., Ind. Eng. Chem. Res., 48, 2135 (2009)
  18. Hassanzadeh A, Abbasian J, Fuel, 89, 1287 (2010)
  19. Lin PC, Huang CW, Hsiao CT, Teng H, Environ. Sci. Technol., 42, 2748 (2008)
  20. Xiao G, Singh R, Chaffee A, Webley P, Int. J. Greenhouse Gas Control, 5, 634 (2011)
  21. Fisher JC II, Siriwardane RV, Steven RW Jr., Ind. Eng. Chem. Res., 51, 5273 (2012)
  22. Lee SC, Chae HJ, Lee SJ, Choi BY, Yi CK, Lee JB, Ryu CK, Kim JC, Environ. Sci. Technol., 42, 2736 (2008)
  23. Zhao C, Chen X, Zhao C, Wu Y, Dong W, Energy Fuels, 26, 3062 (2012)
  24. Walspurger S, Boels L, Cobden PD, Elzinga GD, Haije WG, Brink RW, ChemSusChem., 1, 643 (2008)
  25. Liu S, Ma J, Guan L, Li J, Wei W, Sun Y, Microporous Mesoporous Mater., 117, 466 (2009)
  26. Liu Z, Green WH, Ind. Eng. Chem. Res., 52, 9665 (2013)
  27. Kenarsari SD, Fan M, Jiang G, Shen X, Lin Y, Hu X, Energy Fuels, 27, 6938 (2013)