Korean Journal of Chemical Engineering, Vol.39, No.6, 1487-1495, June, 2022
Catalytic pyrolysis of waste oil into hydrocarbon fuel utilizing cerium oxide catalyst
The depletion of fossil fuels has prompted research into alternative fuels made from regeneration of waste materials. Pyrolysis is a method of converting waste oil into valuable products, such as char, gas, and fuel. This study presents the catalytic pyrolysis of waste oil for producing fuel utilizing cerium oxide, CeO2/Al2O3 and zinc oxide, ZnO/ Al2O3 catalyst. The catalyst and oil were characterized using several characterization techniques to find the physicochemical properties of the catalyst and oil. The optimum condition for catalytic pyrolysis was a reaction temperature at 500℃, with the heating rate at 10 oC/min, utilizing CeO2/Al2O3 catalyst calcined at 700℃. The catalytic pyrolysis successfully converted the waste oil into fuel and the oil product obtained was 93.01 wt% with a high calorific value (54.2MJ/kg). The pyrolysis oil is comprised of aliphatic hydrocarbon (C5-C15 hydrocarbon) that is within the hydrocarbon range for gasoline and diesel. The oil product was also detected to have a low content of oxygen (3.07 wt%) and sulfur (0.60wt%), indicating its potential to serve as a cleaner, fuel reducing the sulfur dioxide, SOX formation. The results reveal that pyrolysis reactors have the ability to convert waste oil into hydrocarbon fuel.