화학공학소재연구정보센터
Macromolecular Research, Vol.30, No.3, 172-182, March, 2022
Effect of β-Chain Alignment Degree on the Performance of Piezoelectric Nanogenerator Based on Poly(Vinylidene Fluoride) Nanofiber
E-mail:,
This work demonstrated the effect of the β-chain alignment degree on piezoelectric nanogenerator (PNG) performance. A simple, safe and low-cost fast-centrifugal spinning technique was used to produce self-poled poly(vinylidene fluoride) (PVDF) nanofiber. PNG based on acetone-prepared PVDF fibers, with high β-chain alignment, generated output open-circuit voltage (VOC) and short-circuit current (ISC) five times higher than the film counterpart. In addition, the fibers showed a remarkable increase in β-chain alignment degree as the ratio of N,N-dimethylformamide (DMF) solvent increased. The optimum nanofiber with the highest β-chain alignment degree, β-fraction and piezoelectric charge coefficient of 0.93, 91.8% and -120 pC.N− was obtained, respectively. PNG based on the optimum fiber displayed the highest VOC, ISC and power density of 14 V, 1.4 µA and 6.7 µWcm−2, respectively. This performance is greater than any PNG made from electrospun PVDF fiber. The excellent performance of the fabricated PNGs was strongly related to the high alignment degree of β-chains parallel along the fiber axis. In addition, due to low Young’s modulus (1.63 MPa) of the optimum fibers, the related lead-free PNG is sensitive to small movements and can be used in wearable and implanted medical devices.
  1. Sivaraj P, Abhilash KP, Nalini B, Perumal P, Somasundaram K, Selvin PC, Macromol. Res., 28, 739 (2020)
  2. Panigrahi BK, Sitikantha D, Bhuyan A, Panda HS, Mohanta K, Mater. Today Proc., 41, 335 (2019)
  3. Mistewicz K, Jesionek M, Kim HJ, Hajra S, Koziol M, Chrobok L, Wang X, Ultrason. Sonochem., 78, 105718 (2021)
  4. Hajra S, Sahu M, Oh D, Kim HJ, Ceram. Int., 47, 15695 (2021)
  5. Vivekananthan V, Alluri NR, Purusothaman Y, Chandrasekhar A, Kim SJ, Nanoscale, 9, 15122 (2017)
  6. Sahu M, Hajra S, Lee K, Deepti P, Mistewicz K, Kim HJ, Cyrystals, 11, 85 (2021)
  7. Lee JH, Kim SJ, Park JS, Kim JH, Macromol. Res., 24, 909 (2016)
  8. Dhatarwal P, Sengwa RJ, Macromol. Res., 27, 1009 (2019)
  9. Jeong H, Baek S, Han S, Jang H, Rockson TK, Lee HS, Macromol. Res., 26, 493 (2018)
  10. Xia W, Xie M, Feng X, Chen L, Zhao Y, Macromol. Res., 26, 1225 (2018)
  11. Maity K, Ghosh SK, Xie M, Bowen CR, Mandal D, Design of Flexible Piezoelectric-Pyroelectric Nanogenerator for Self-powered Wearable Sensor, in AIP Conference Proceedings, American Institute of Physics Inc., Vol. 2115, 2019.
  12. Tamil, Jayathilaka WADM, Hilaal A, Ramakrishna S, Int. J. Nanosci., 19 (2020)
  13. Bae A, Compos. Part B: Eng., 99, 112 (2016)
  14. Baniasadi M, Xu Z, Moreno S, Daryadel S, Cai J, Naraghi M, Minary-Jolandan M, Polymer, 118, 223 (2017)
  15. Chen X, Tseng JK, Treufeld I, Mackey M, Schuele DE, Li R, Fukuto M, Baer E, Zhu L, J. Mater. Chem. C, 5, 10417 (2017)
  16. Bi X, Song S, Sun S, Macromol. Res., 25, 1163 (2017)
  17. Chang HH, Chang LK, Yang CD, Lin DJ, Cheng LP, Polymer, 115, 164 (2017)
  18. Branciforti MC, Sencadas V, Lanceros-Mendez S, Gregorio R, J. Polym. Sci. B: Polym. Phys., 45, 2793 (2007)
  19. Chen X, Song Y, Su Z, Chen H, Cheng X, Zhang J, Han M, Zhang H, Nano Energy, 38, 43 (2017)
  20. Sathiyanathan P, Prabu AA, Kim KJ, Macromol. Res., 24, 670 (2016)
  21. Sathiyanathan P, Dhevi DM, Prabu AA, Kim KJ, Macromol. Res., 27, 743 (2019)
  22. Huan Y, Zhang X, Song J, Zhao Y, Wei T, Zhang G, Wang X, Nano Energy, 50, 62 (2018)
  23. Ibtehaj K, Jumali MHH, Al-Bati S, Polymer, 208, 122956 (2020)
  24. Maji S, Sarkar PK, Aggarwal L, Ghosh SK, Mandal D, Sheet G, Acharya S, Phys. Chem. Chem. Phys., 17, 8159 (2015)
  25. Tashiro K, Kobayashi M, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 50, 1573 (1994)
  26. Weng B, Xu F, Garza G, Alcoutlabi M, Salinas A, Lozano K, Polym. Eng. Sci., 55, 81 (2015)
  27. Liew WH, Mirshekarloo MS, Chen S, Yao K, Tay FEH, Sci. Rep., 5, 09790 (2015)
  28. Ren L, Pandit V, Elkin J, Denman T, Cooper JA, Kotha SP, Nanoscale, 5, 2337 (2013)
  29. Conte AA, Shirvani K, Hones H, Wildgoose A, Xue Y, Najjar R, Hu X, Xue W, Beachley VZ, Polymer, 171, 192 (2019)
  30. Adhikary P, Mandal D, Phys. Chem. Chem. Phys., 19, 17789 (2017)
  31. Jana S, Garain S, Sen S, Mandal D, Phys. Chem. Chem. Phys., 17, 17429 (2015)
  32. Pusty M, Sinha L, Shirage PM, New J. Chem., 43, 284 (2019)
  33. Li C, Boban M, Snyder SA, Kobaku SPR, Kwon G, Mehta G, Tuteja A, Adv. Funct. Mater., 26, 6121 (2016)
  34. Soin N, Shah TH, Anand SC, Geng J, Pornwannachai W, Mandal P, Reid D, Sharma S, Hadimani RL, Bayramol DV, Siores E, Energy Environ. Sci., 7, 1670 (2014)
  35. Karan SK, Bera R, Paria S, Das AK, Maiti S, Maitra A, Khatua BB, Adv. Energy Mater., 6, 1601016 (2016)
  36. Adhikary P, Garain S, Mandal D, Phys. Chem. Chem. Phys., 17, 7275 (2015)
  37. Prabu AA, Lee JS, Kim KJ, Lee HS, Vib. Spectrosc., 41, 1 (2006)
  38. Andrews L, Johnson GL, J. Phys. Chem., 88, 425 (1984)
  39. Petit S, Madejova J, in Developments in Clay Science, Elsevier, Amsterdam, Vol. 5, Chap. 2.7, pp 213-231, 2013.
  40. Gedde UW, Hedenqvist MS, Fundamental Polymer Science, 2nd ed., Springer International Publishing, Cham, Switzerland, 2019.
  41. Forde NR, Butler LJ, Abrash SA, J. Chem. Phys., 110, 8954 (1999)
  42. Eggers J, Mod. Phys., 69, 865 (1997)
  43. You S, Zhang L, Gui J, Cui H, Guo S, Micromachines, 10, 302 (2019)
  44. Hu P, Zheng D, Zhao C, Zhang Y, Niu J, Mater. Lett., 218, 71 (2018)
  45. Fuh YK, Huang ZM, Wang BS, Li SC, Nanoscale Res. Lett., 12, 44 (2017)
  46. Nam ND, Moon W, J. Sens. Sci. Technol., 28, 205 (2019)