Macromolecular Research, Vol.30, No.3, 205-211, March, 2022
Synthesis of Thermo-Controlled Cyclic Olefin Polymers via Ring Opening Metathesis Polymerization: Effect of Copolymerization with Flexible Modifier
E-mail:,
Cyclic olefin polymers (COPs) have gained attention as key components of future engineering plastics. Herein, we synthesized thermally stable COPs with high flexibility and optical transparency utilizing an industrially available WCl6/iBu3Al/EtOH catalyst system. The strategically designed cyclic monomers with flexible butyl group (nbutylnorbornene (nBuNB) and nbutyl-tetracyclododec-4-ene (nBuDMON) (flexible modifier)) and commercially available tetracyclic monomer (DMON) were copolymerized via ring opening metathesis polymerization (ROMP). Thereafter, the double bonds of the resulting polymer backbone were saturated by hydrogenation. The obtained series of COPs by changing the molar ratio of DMON and the flexible modifier showed not only various glass transition temperatures (Tg) ranged from 80 to 155°C but also constantly high degradation temperatures (Td,5%) around 300°C. The representative hydrogenated P(DMON0.7-co-nBuDMON0.3) exhibited 155°C of Tg and 402°C of Td,5% as well as excellent optical transmittance (> 91%) in the visible range. Considering these superior thermal stability, optical transparency, and high productivity (190 g L−1), COPs with the flexible modifier were anticipated to be key component materials for future optical applications.
Keywords:cyclic olefin polymer;ring-opening metathesis polymerization;hydrogenation;glass transition temperature;optical transparency
- Yang JX, Cui J, Long YY, Li YG, Li YS, J. Polym. Sci. A: Polym. Chem., 52, 2654 (2014)
- Lee SH, Kim HJ, Choi DH, Hwang SS, Chae HS, Baek KY, Macromol. Res., 20, 777 (2012)
- Kohara T, Macromol. Symp., Wiley Online Library1996, Vol. 101, pp 571-579.
- Khanarian G, Opt. Eng., 40, 1024 (2001)
- Lamonte RR, McNally D, Adv. Mater. Process, 159, 33 (2001)
- Schossleitner K, O'Mahony C, Brandstätter S, Haslinger MJ, Demuth S, Fechtig D, Petzelbauer P, J. Biomed. Mater. Res. A, 107, 505 (2019)
- Nunes PS, Ohlsson PD, Ordeig O, Kutter JP, Microfluid. Nanofluidics, 9, 145 (2010)
- Szczepaniak G, Nogaś W, Piątkowski J, Ruszczyńska A, Bulska E, Grela K, Org. Process Res. Dev., 23, 836 (2019)
- Edwards JP, Wolf WJ, Grubbs RH, J. Polym. Sci. A: Polym. Chem., 57, 228 (2019)
- Bielawski CW, Grubbs RH, Angew. Chem.-Int. Edit., 39, 2903 (2000)
- Bielawski CW, Grubbs RH, Prog. Polym. Sci., 32, 1 (2007)
- Patton PA, McCarthy TJ, Macromolecules, 20, 778 (1987)
- Hein PR, J. Polym. Sci. A: Polym. Chem., 11, 163 (1973)
- Widyaya VT, Vo HT, Putra RDD, Hwang WS, Ahn BS, Lee H, Eur. Polym. J., 49, 2680 (2013)
- Davidson T, Wagener K, Priddy D, Macromolecules, 29, 786 (1996)
- Cui L, Yang JX, Li YG, Li YS, Polyolefins J., 5, 15 (2018)
- Yang JX, Cui J, Long YY, Li YG, Li YS, J. Polym. Sci. A: Polym. Chem., 52, 3240 (2014)
- Hayano S, Kurakata H, Tsunogae T, Nakayama T, Sato Y, Yasuda H, Macromolecules, 36, 7422 (2003)
- Kodemura J, Natsuume T, Polym. J., 27, 1167 (1995)
- Esteruelas MA, González F, Herrero J, Lucio P, Oliván M, Ruiz-Labrador B, Polym. Bull., 58, 923 (2007)
- Cui J, Yang JX, Pan L, Li YS, Macromol. Chem. Phys., 217, 2708 (2016)
- Kwon OJ, Vo HT, Lee SB, Kim TK, Kim HS, Lee HJ, Bull. Korean. Chem. Soc., 32, 2737 (2011)
- Forrest WP, Axtell JC, Schrock RR, Organometallics, 33, 2313 (2014)
- Ban HT, Shigeta M, Nagamune T, Uejima M, J. Polym. Sci. A: Polym. Chem., 51, 4584 (2013)
- Sun J, Wang Y, Pan Y, Org. Biomol. Chem., 13, 3878 (2015)
- Azhar NHA, Jamaluddin N, Md Rasid H, Yusof MJM, Yusoff SFM, Int. J. Polym. Sci., 2015, 243038 (2015)
- Yoon KH, Kim KO, Wang C, Park I, Yoon DY, J. Polym. Sci. A: Polym. Chem., 50, 3914 (2012)
- Zheng YL, Galin M, Galin JC, J. Polym. Sci. A: Polym. Chem., 29, 724 (1988)
- Liu G, Zhang L, Yao Y, Yang L, Gao J, J. Appl. Polym. Sci., 88, 2891 (2003)