Korean Journal of Materials Research, Vol.32, No.3, 125-131, March, 2022
Effect of Sulfation on Physicochemical Properties of ZrO2 and TiO2 Nanoparticles
E-mail:
Effect of sulfation processes on the physicochemical properties of ZrO2 and TiO2 nanoparticles were thoroughly investigated. SO4/ZrO2 and SO4/TiO2 catalysts were synthesized to identify the acidity character of each. The wet impregnation method of ZrO2 and TiO2 nanoparticles was employed using H2SO4 with various concentrations of 0.5, 0.75, and 1 M, followed by calcination at 400, 500, and 600 °C to obtain optimum conditions of the catalyst synthesis process. The highest total acidity was found when using 1 M SO4/ZrO2-500 and 1 M SO4/TiO2-500 catalysts, with total acidity values of 2.642 and 6.920 mmol/ g, respectively. Sulfation increases titania particles via agglomeration. In contrast, sulfation did not practically change the size of zirconia particles. The sulfation process causes color of both catalyst particles to brighten due to the presence of sulfate. There was a decrease in surface area and pore volume of catalysts after sulfation; the materials’ mesoporous structural properties were confirmed. The 1 M SO4/ZrO2 and 1 M SO4/TiO2 catalysts calcined at 500 °C are the best candidate heterogeneous acid catalysts synthesized in thus work.
- Susi EP, Wijaya K, Wangsa, Pratika RA, Hariani PL, Asian J. Chem., 32, 2773 (2020)
- Mo X, Lotero E, Lu C, Liu Y, Goodwin JG, Catal. Lett., 123, 1 (2008)
- Wenping S, Jianwei L, React. Kinet. Mech. Catal., 111, 215 (2014)
- Pratika RA, Wijaya K, Trisunaryanti W, J. Environ. Chem. Eng., 9, 106547 (2021)
- Zarubica AR, Miljkovic MN, Kiss EE, Boskovic GC, React. Kinet. Catal. Lett., 90, 145 (2007)
- Song X, Sayari A, Catal. Rev.-Sci. Eng., 38, 329 (1996)
- Carlucci C, Degennaro L, Luisi R, Catalysts, 9, 75 (2019)
- Gardi J, Hassanpour A, Lai X, Ahmed MH, Appl. Catal. A: Gen., 527, 81 (2016)
- Ore MS, Wijaya K, Trisunaryanti W, Saputri WD, Heraldy E, Yuwana MW, Hariani PL, Budiman A, Sudiono S, J. Environ. Chem. Eng., 8, 104205 (2020)
- Raj KJA, Viswanathan B, ACS Appl. Mater. Interfaces, 1, 2462 (2019)
- Lin XH, Yin XJ, Liu JY, Li SFY, Appl. Catal. B: Environ., 203, 731 (2017)
- Hino M, Kurashige M, Matsuhashi H, Arata K, Thermochim. Acta, 441, 35 (2006)
- Busto M, Vera CR, Grau JM, Fuel Process. Technol., 92, 1675 (2011)
- Sinhamahapatra A, Sutradhar N, Ghosh M, Bajaj HC, Panda AB, Appl. Catal. A: Gen., 402, 87 (2011)
- Sekewael SJ, Pratika RA, Hauli L, Amin AK, Utami M, Wijaya K, Catalysts, 12, 191 (2022)
- Wijaya K, Kurniawan MA, Saputri WD, Trisunaryanti W, Mirzan M, Hariani PL, Tikoalu AD, J. Environ. Chem. Eng., 9, 105399 (2021)
- Sarvari MH, Sodagar E, C. R. Chim., 16, 229 (2013)
- Ropero VJL, Perez AA, Gomez R, Gomez NM, Appl. Catal. A: Gen., 379, 24 (2010)
- Hauli L, Wijaya K, Armunanto R, Orient. J. Chem., 34, 1559 (2018)
- Patel A, Brahmkhatri V, Singh N, Renew. Energy, 51, 227 (2013)
- Utami M, Wijaya K, Trisunaryati W, Key. Eng. Mater., 757, 131 (2017)
- Fadhil AB, Aziz AM, Al-Tamer MH, Energy Conv. Manag., 108, 255 (2016)