Applied Chemistry for Engineering, Vol.33, No.2, 159-165, April, 2022
플라즈마 및 직접 기상 불소화에 의해 제어된 산소결핍 불소화 WO3 광촉매의 광분해 특성
Photodegradation Characteristics of Oxygen Vacancy-fluorinated WO3 Photocatalysts Controlled by Plasma and Direct Vapor Fluorination
E-mail:
초록
WO3 광촉매의 광분해 성능을 증대시키기 위하여 산소결핍자리 생성을 유도하기 위한 불소 도핑을 수행하였다. 불소 도핑을 위하여 플라즈마 불소화와 직접 기상 불소화를 진행하였으며, 두 가지 방법으로 불소화한 WO3 광촉매의 광분 해 성능을 비교하기 위하여 메틸렌블루 염료 분해 성능을 평가하였다. 플라즈마 불소화한 WO3 광촉매와 직접 기상 불소화한 WO3 광촉매의 산소결핍자리는 각 14.65 및 18.59%로 미처리 WO3 광촉매 대비 각 23, 56% 증가하였으며, WO3 광촉매의 산소결핍자리가 증가함에 따라 메틸렌블루 염료분해 성능 역시 미처리 WO3 광촉매 대비 각 1.7, 3.4배 증가한 것을 확인하였다. 또한 불소 도핑 후 밴드갭 에너지는 각 2.95 eV에서 2.64, 2.45 eV로 감소한 것을 확인하였다. 이러한 결과로 미루어 보아 직접 기상 불소화 공정이 플라즈마 불소화 공정과 비교하여 WO3 광촉매의 활성을 증대시 키는데 유리한 공정인 것으로 사료된다.
To enhance the photocatalytic activities of WO3 photocatalysts, fluorine doping was performed to induce the oxygen vacancies. Both plasma and direct vaper fluorination were carried out for fluorine doping, and photocatalytic activities were examined by using methylene blue dye. Oxygen vacancies of the plasma and direct vaper fluorinated WO3 photocatalysts were measured to be 14.65 and 18.59%, which increased to about 23 and 56% at pristine WO3 photocatalysts. The degradation efficiency of methylene blue was also determined about 1.7 and 3.4 times higher than pristine WO3 photocatalysts, respectively, depending on oxygen vacancies increased. In addition, it was confirmed that the bandgap process energy decreased from 2.95 eV to 2.64 and 2.45 eV after fluorine doping. From this result, it is considered that the direct vaper fluorination has an advantage for increasing the photocatalytic activities of WO3 compared to that of the plasma fluorination.
- Lee J, Seong S, Jin S, Jeong Y, Noh J, J. Ind. Eng. Chem., 100, 126 (2021)
- Chun SK, J. Korean Soc. Water Wastewater, 27, 581 (2013)
- Bilad MR, Nawi NIM, Subramaniam DD, Shamsuddin N, Khan AL, Jaafar J, Nandiyanto ABD, J. Water Process Eng., 36, 101264 (2020)
- Rafiq A, Ikram M, Ali S, Niaz F, Khan M, Khan Q, Maqbool M, J. Ind. Eng. Chem., 97, 111 (2021)
- Quyen VT, Kim J, Park PM, Huong PT, Viet NM, Thang PQ, J. Environ. Chem. Eng., 9, 104737 (2021)
- Khan AAP, Singh P, Raizada P, Asiri AM, J. Ind. Eng. Chem., 98, 148 (2021)
- Elgorban AM, Al Kheraif AA, Syed A, Colloids Surf. A: Physicochem. Eng. Asp., 629, 127416 (2021)
- Kang KM, Jeong JH, Lee GI, Im JM, Cheon HJ, Kim DH, Nah YC, J. Korean Powder Metall. Inst., 26, 40 (2019)
- Zhang J, Zhu K, Zhu Y, Qin C, Liu L, Liu D, Wang Y, Gan W, Fu X, Hao H, Chem. Phys. Lett., 750, 137483 (2020)
- Manojkumar P, Lokeshkumar E, Saikiran A, Govardhanan B, Ashok M, Rameshbabu N, J. Alloy. Compd., 825, 154092 (2020)
- Mohammadi S, Sohrabi M, Golikand AN, Fakhri A, J. Photochem. Photobiol. B-Biol., 161, 217 (2016)
- Tri NLM, Kim J, Giang BL, Al Tahtamouni T, Huong PT, Lee C, Viet NM, J. Ind. Eng. Chem., 80, 597 (2019)
- Zheng Y, Chen G, Yu Y, Zhou Y, He F, Appl. Surf. Sci., 362, 182 (2016)
- Lee H, Jang HS, Kim NY, Joo JB, J. Ind. Eng. Chem., 99, 352 (2021)
- Jin G, Liu S, Dig. J. Nanomater. Biostruct., 4, 1179 (2016)
- Singh S, Srivastava VC, Lo SL, Mater. Sci. Forum, 855, 105 (2016)
- Liao M, Su L, Deng Y, Xiong S, Tang R, Wu Z, Ding C, Yang L, Gong D, J. Mater. Sci., 56, 14416 (2021)
- Samsudin EM, Abd Hamid SB, Appl. Surf. Sci., 391, 326 (2017)
- Wang X, Wang X, Di Q, Zhao H, Liang B, Yang J, Materials, 10, 1398 (2017)
- Yin J, Xing Z, Kuang J, Li Z, Zhu Q, Zhou W, J. Ind. Eng. Chem., 78, 155 (2019)
- Gao C, Zhou J, Liu G, Wang L, J. Alloy. Compd., 727, 501 (2017)
- Tian Y, Zhang X, Wang Y, Cui Z, J. Ind. Eng. Chem., 94, 205 (2021)
- Lee R, Lim C, Kim MJ, Lee YS, Appl. Chem. Eng., 32, 55 (2021)
- Kim MJ, Jung MJ, Kim MI, Choi SS, Lee YS, Appl. Chem. Eng., 26, 587 (2015)
- Kim MJ, Jung MJ, Choi SS, Lee YS, Appl. Chem. Eng., 26, 432 (2015)
- Jeong E, Jung MJ, Lee SG, Kim HG, Lee YS, J. Ind. Eng. Chem., 43, 78 (2016)
- Lee KM, Lee SE, Lee YS, Polym. Korea, 40, 553 (2016)
- Lee H, Lim C, Lee R, Lee YS, Appl. Chem. Eng., 32, 632 (2021)
- Song C, Li C, Yin Y, Xiao J, Zhang X, Song M, Dong W, Vacuum, 114, 13 (2015)
- Le TK, Flahaut D, Foix D, Blanc S, Nguyen HKH, Huynh TKX, Martinez H, J. Solid State Chem., 187, 300 (2012)
- Gerand B, Nowogrocki G, Guenot J, Figlarz M, J. Solid State Chem., 29, 429 (1979)
- Lange MA, Krysiak Y, Hartmann J, Dewald G, Cerretti G, Tahir MN, Panthöfer M, Barton B, Reich T, Zeier WG, Adv. Funct. Mater., 30, 1909051 (2020)
- Ge S, Wong KW, Tam SK, Mak CH, Ng KM, J. Nanopart. Res., 20 (2018)
- Kim T, Baek G, Yang S, Yang JY, Yoon KS, Kim SG, Lee JY, Im HS, Hong JP, Sci. Rep., 8, 8532 (2018)
- Zhang X, Han Y, Liu W, Pan N, Li D, Chai J, J. Ind. Eng. Chem., 97, 326 (2021)
- Kim KH, Cho JH, Hwang JU, Im JS, Lee YS, J. Ind. Eng. Chem., 99, 48 (2021)
- Park BG, Chung KH, Korean Chem. Eng. Res., 58, 486 (2020)
- Wang J, Wang Z, Huang B, Ma Y, Liu Y, Qin X, Zhang X, Dai Y, ACS Appl. Mater. Interfaces, 4, 4024 (2012)
- Samsudin EM, Abd Hamid SB, Appl. Surf. Sci., 391, 326 (2017)
- Kang Y, Wu X, Gao Q, ACS Sustain. Chem. Eng., 7, 4210 (2019)
- Lee H, Gwon O, Choi K, Zhang L, Zhou J, Park J, Yoo JW, Wang JQ, Lee JH, Kim G, ACS Catal., 10, 4664 (2020)
- Gan L, Xu L, Shang S, Zhou X, Meng L, Ceram. Int., 42, 15235 (2016)
- Lu Y, Zhang J, Wang F, Chen X, Feng Z, Li C, ACS Appl. Energy Mater., 1, 2067 (2018)