화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.109, 347-358, May, 2022
Phenol removal and hydrogen production from water: Silver nanoparticles decorated on polyaniline wrapped zinc oxide nanorods
E-mail:,
The toxic and carcinogenic organic compounds discharge from industries, contaminate the natural reservoirs of water and air which eventually pose a global threat not only to the aquatic life but also to the humanity. Herein, ternary nanocomposites of silver-nanoparticle (AgNPs)-decorated on polyaniline (Pani)-wrapped zinc oxide nanorods (AgNPs@Pani/ZnO) were prepared via a facile approach. The nanocomposite degraded 97.91% phenol with an optimized dosage and concentration of H2O2. Moreover, the apparent rate constant for phenol degradation was 3.69 times higher than for pure ZnO nanorods. The hydrogen production from AgNPs@Pani/ZnO was 1.58 and 2.74 times higher than Pani/ ZnO and ZnO, respectively. The enhanced phenol degradation and hydrogen production is attributed to the transfer of holes to the Pani, from which the electrons were transferred to the conduction band of ZnO and eventually to the conduction band of the AgNPs, where they accelerated the redox reactions for rapid photolysis of water and phenol. The concentration of the catalyst dosage affected the rate of phenol degradation. Further, response surface methodology was also applied in order to design 13 sets of random experiments in which the catalyst dosage and degradation time were varied to predict the phenol degradation.
  1. Taherian Z, Khataee A, Han N, Orooji Y, J. Ind. Eng. Chem. (2021)
  2. Lee CH, Kwon BW, Oh JH, Kim S, Han J, Nam SW, Yoon SP, Lee KB, Ham HC, J. Ind. Eng. Chem., 105, 563 (2022)
  3. Wang X, Jin Z, J. Ind. Eng. Chem., 103, 222 (2021)
  4. Song YH, Hidayat S, Effendi AJ, Park JY, J. Ind. Eng. Chem., 94, 302 (2021)
  5. Jia YH, Ryu JH, Kim CH, Lee WK, Tran TVT, Lee HL, Zhang RH, Ahn DH, J. Ind. Eng. Chem., 18, 715 (2012)
  6. Panisko E, Wietsma T, Lemmon T, Albrecht K, Howe D, Biomass Bioenerg., 74, 162 (2015)
  7. Villegas LGC, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N, Curr. Pollut. Rep., 2, 157 (2016)
  8. Tews I, Garcia A, Ayiania M, Mood SH, Mainali K, McEwen JS, Garcia-Perez M, Biomass Convers. Biorefin., 1 (2021)
  9. Hank D, Azi Z, Hocine SA, Chaalal O, Hellal A, J. Ind. Eng. Chem., 20, 2256 (2014)
  10. Saleh TA, Elsharif AM, Asiri S, Mohammed ARI, Dafalla H, Environ. Nanotechnol. Monit. Manage., 14, 100302 (2020)
  11. Guo J, Wu C, Zhang J, Qi X, Lv S, Jiang S, Zhou T, Lu D, Feng C, Chang X, Environ. Int., 139, 105692 (2020)
  12. Wang Z, Li S, Ge S, Lin S, J. Agric. Food Chem., 68, 3330 (2020)
  13. ATSDR, (2018).
  14. Rani M, Shanker U, Colloids Surf. A: Physicochem. Eng. Asp., 553, 546 (2018)
  15. Saravanan A, Kumar PS, Vo DVN, Yaashikaa PR, Karishma S, Jeevanantham S, Gayathri B, Bharathi VD, Environ. Chem. Lett., 1 (2020)
  16. Jilani A, Rehman GU, Ansari MO, Othman MHD, Hussain SZ, Dustgeer MR, Darwesh R, New J. Chem., 44, 19570 (2020)
  17. Yadav A, Kumar H, Sharma R, Kumari R, Colloid Interface Sci. Commun., 40, 100339 (2021)
  18. Ansari MO, Khan MM, Ansari SA, Lee J, Cho MH, RSC Adv., 4, 23713 (2014)
  19. Jilani A, Hussain SZ, Ansari MO, Kumar R, Dustgeer MR, Othman MHD, Barakat M, Melaibari AA, J. Mater. Sci., 56, 7434 (2021)
  20. Wang H, Cao S, Yang B, Li H, Wang M, Hu X, Sun K, Zang Z, Solar RRL, 4, 1900363 (2020)
  21. Mishra YK, Modi G, Cretu V, Postica V, Lupan O, Reimer T, Paulowicz I, Hrkac V, Benecke W, Kienle L, ACS Appl. Mater. Interfaces, 7, 14303 (2015)
  22. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T, J. Am. Chem. Soc., 130, 1676 (2008)
  23. Chen X, Zheng Z, Ke X, Jaatinen E, Xie T, Wang D, Guo C, Zhao J, Zhu H, Green Chem., 12, 414 (2010)
  24. Hossain MM, Islam MA, Shima H, Hasan M, Hilal M, Lee M, RSC Adv., 8, 16927 (2018)
  25. Ansari MO, Yadav SK, Cho JW, Mohammad F, Compos. B Eng., 47, 155 (2013)
  26. Dustgeer MR, Asma ST, Jilani A, Raza K, Hussain SZ, Shakoor MB, Iqbal J, Abdel-wahab MS, Darwesh R, Inorg. Chem. Commun., 128, 108606 (2021)
  27. Mudassir MA, Hussain SZ, Jilani A, Zhang H, Ansari TM, Hussain I, Langmuir, 35, 8996 (2019)
  28. Mehto A, Mehto V, Chauhan J, Singh I, Pandey R, J. Nanomed. Res., 5, 1 (2017)
  29. Turkten N, Karatas Y, Bekbolet M, Water, 13, 1025 (2021)
  30. Jilani A, Othman MHD, Ansari MO, Khan IU, Hussain SZ, Synth. Met., 251, 30 (2019)
  31. Ahmed F, Kumar S, Arshi N, Anwar MS, Su-Yeon L, Kil GS, Park DW, Koo BH, Lee CG, Thin Solid Films, 519, 8375 (2011)
  32. Singh R, Barman PB, Sharma D, J. Mater. Sci.-Mater. Electron., 28, 5705 (2017)
  33. Sharma N, Kumar J, Thakur S, Sharma S, Shrivastava V, Drug Invent. Today, 5, 50 (2013)
  34. Moulder JF, Phys. Electron., 230 (1995)
  35. Wang C, Wu D, Wang P, Ao Y, Hou J, Qian J, Appl. Surf. Sci., 325, 112 (2015)
  36. Li W, Du D, Yan T, Kong D, You J, Li D, J. Colloid Interface Sci., 444, 42 (2015)
  37. Wood KN, Christensen ST, Nordlund D, Dameron AA, Ngo C, Dinh H, Gennett T, O’Hayre R, Pylypenko S, Surf. Interface Anal., 48, 283 (2016)
  38. Domínguez-Crespo MA, López-Oyama AB, Torres-Huerta AM, Hernández-Basilio AR, Palma-Ramírez D, Lois-Correa JA, García-Zaleta DS, J. Nanomater., 2019, 2872460 (2019)
  39. Tai JY, Leong KH, Saravanan P, Sim LC, Bioinspired Synthesis of Carbon Dots/g-C3N4 Nanocomposites for Photocatalytic Application, EDP Sciences, p. 05015, 2018.
  40. Kamarulzaman N, Kasim MF, Rusdi R, Nanoscale Res. Lett., 10, 1034 (2015)
  41. Liqiang J, Yichun Q, Baiqi W, Shudan L, Baojiang J, Libin Y, Wei F, Honggang F, Jiazhong S, Sol. Energy Mater. Sol. Cells, 90, 1773 (2006)
  42. Bhaskar R, Lakshmanan A, Marimuthu S, Ravishankar T, Jose MT, Nariangadu L, Indian J. Pure Appl. Phys., 47, 772 (2009)
  43. Reddy G, Reddy J, Krishna RH, Gopal G, J. Asian Ceram. Soc., 5 (2017)
  44. Zhang X, Zhao Z, Zhang W, Zhang G, Qu D, Miao X, Sun S, Sun Z, Small, 12, 793 (2016)
  45. Saha D, Desipio MM, Hoinkis TJ, Smeltz EJ, Thorpe R, Hensley DK, Fischer-Drowos SG, Chen J, J. Environ. Chem. Eng., 6, 4927 (2018)
  46. Shen L, Bao N, Zheng Y, Gupta A, An T, Yanagisawa K, J. Phys. Chem. C, 112, 8809 (2008)
  47. Yunus NN, Hamzah F, So’aib MS, Krishnan J, Mater. Sci. Eng., 206, 012092 (2017)
  48. Kumar A, Pandey G, Mater. Sci. Eng. Int. J., 1, 1 (2017)
  49. Habtamu F, Berhanu S, Mender T, J. Chem., 2021 (2021)
  50. Ingram DB, Linic S, J. Am. Chem. Soc., 133, 5202 (2011)
  51. Hamdy MS, Abd-Rabboh HSM, Benaissa M, Al-Metwaly MG, Galal AH, Ahmed MA, Opt. Mater., 117, 111198 (2021)
  52. Jiao J, Wan J, Ma Y, Wang Y, RSC Adv., 6, 106031 (2016)
  53. Huang B, Rao RR, You S, Myint KH, Song Y, Wang Y, Ding W, Giordano L, Zhang Y, Wang T, Muy S, Katayama Y, JACS Au, 1, 1674 (2021)
  54. Shen Y, Zhan Y, Li S, Ning F, Du Y, Huang Y, He T, Zhou X, Chem. Sci., 8, 7498 (2017)
  55. Wang Z, Ye X, Chen L, Huang P, Wang Q, Ma L, Hua N, Liu X, Xiao X, Chen S, Mater. Sci. Semicond. Process, 121, 105354 (2021)
  56. Sabzehparvar M, Kiani F, Tabrizi NS, J. Alloy. Compd., 876, 160133 (2021)