Journal of Industrial and Engineering Chemistry, Vol.109, 384-396, May, 2022
Effect of reduction conditions of Mo-Fe/MgO on the formation of carbon nanotube in catalytic methane decomposition
E-mail:,
The effects of temperature, hydrogen partial pressure, and time in catalytic reduction step on carbon nanotube growth in a catalytic methane decomposition have been investigated for Mo-Fe/MgO catalysts. The results show that the reduction conditions of the catalyst affect the crystal structure of the metal formed on the catalyst surface and the growth mechanism of the generated carbon nanotubes. Both diameter distribution and crystallinity of the CNTs increased with the increase of reduction temperature in the range of 400 to 800 ℃. The optimal reduction temperature with the maximum carbon yield was found to be 500 ℃. The increase of hydrogen partial pressure and reduction time increased the CNT diameter distribution, and the optimal hydrogen partial pressure and reduction time with maximum carbon yield were found to be 0.1 atm, 60 min and 0.3 atm, 5 min, respectively. In the different combination of hydrogen partial pressure and reduction time for maximizing carbon yield, the CNT average diameter did not have a significant change, while the CNT crystallinity showed opposite trends depending on the methane decomposition reaction time. Ultimately, it was confirmed that the Mo-Fe/MgO catalyst can change the properties of CNTs produced through control of reduction conditions.
Keywords:Catalytic methane decomposition;Multi-walled carbon nanotubes (MWCNTs);Mo-Fe/MgO;Reduction condition;CNT diameter;CNT crystallinity
- Iijima S, Nature, 354, 56 (1991)
- Motta M, Li YL, Kinloch I, Windle A, Nano Lett., 5(8), 1529 (2005)
- Tran TQ, Fan Z, Liu P, Myint SM, Duong HM, Carbon N. Y., 99, 407 (2016)
- Liu XM, Huang ZD, Oh SW, Zhang B, Ma PC, Yuen MMF, Kim JK, Compos. Sci. Technol., 72(2), 121 (2012)
- Dasgupta K, Joshi JB, Banerjee S, Chem. Eng. J., 171(3), 841 (2011)
- See CH, Harris AT, Ind. Eng. Chem. Res., 46(4), 997 (2007)
- Smalley RE, Carbon nanotubes: synthesis, structure, properties, and applications, Springer, 2003.
- De Volder MFL, Tawfick SH, Baughman RH, Hart AJ, Science, 339(6119), 535 (2013)
- Harris PJ, Harris PJF, Carbon nanotube science: synthesis, properties and applications, Cambridge University Press, 2009.
- Kobashi K, Ata S, Yamada T, Futaba DN, Okazaki T, Hata K, ACS Appl. Nano Mater., 2(7), 4043 (2019)
- Hiramatsu M, Hori M (Eds.), Carbon nanowalls: synthesis and emerging applications, Springer Vienna, Vienna, 2010.
- Mubarak NM, Abdullah EC, Jayakumar NS, Sahu JN, J. Ind. Eng. Chem., 20(4), 1186 (2014)
- Colomer JF, Stephan C, Lefrant S, Van Tendeloo G, Willems I, Kónya Z, Fonseca A, Laurent C, Nagy JB, Chem. Phys. Lett., 317(1-2), 83 (2000)
- Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari AC, Blackburn AM, Wang KY, Robertson J, Nano Lett., 6(6), 1107 (2006)
- Amara H, Bichara C, Ducastelle F, Phys. Rev. Lett., 100(5), 1 (2008)
- Wang N, Yao BD, Appl. Phys. Lett., 78(25), 4028 (2001)
- Tanemura M, Iwata K, Takahashi K, Fujimoto Y, Okuyama F, Sugie H, Filip V, J. Appl. Phys., 90(3), 1529 (2001)
- Yamazaki Y, Katagiri M, Sakuma N, Suzuki M, Sato S, Nihei M, Wada M, Matsunaga N, Sakai T, Awano Y, Appl. Phys. Express, 3, 5 (2010)
- Qian JX, Chen TW, Enakonda LR, Liu DB, Mignani G, Basset JM, Zhou L, Int. J. Hydrog. Energy, 45(15), 7981 (2020)
- Qian JX, Chen TW, Enakonda LR, Liu DB, Basset JM, Zhou L, Int. J. Hydrog. Energy, 45(32), 15721 (2020)
- Wang D, Zhang J, Sun J, Gao W, Cui Y, Int. J. Hydrog. Energy, 44(14), 7205 (2019)
- Keipi T, Hankalin V, Nummelin J, Raiko R, Energy Conv. Manag., 110, 1 (2016)
- Pinilla JL, Utrilla R, Karn RK, Suelves I, Lázaro MJ, Moliner R, García AB, Rouzaud JN, Int. J. Hydrog. Energy, 36(13), 7832 (2011)
- Dipu AL, Int. J. Energy Res., 45(7), 9858 (2021)
- Ezz AA, Kamel MM, Saad GR, J. Saudi Chem. Soc., 23(6), 666 (2019)
- Pudukudy M, Yaakob Z, Syahri KM, Jia Q, Shan S, J. Ind. Eng. Chem., 84, 150 (2020)
- Chen Y, Riu DH, Lim YS, Met. Mater. Int., 14(3), 385 (2008)
- Bayat N, Rezaei M, Meshkani F, Int. J. Hydrog. Energy, 41(3), 1574 (2016)
- Awadallah AE, Aboul-Enein AA, Aboul-Gheit AK, Fuel, 129, 27 (2014)
- Liang W, Yan H, Feng X, Chen C, Lin D, Liu J, Chen X, Liu Y, Yang C, Shan H, Appl. Catal. A: Gen., 597, 117551 (2020)
- Labunov VA, Basaev AS, Shulitski BG, Shaman YP, Komissarov I, Prudnikava AL, Tay BK, Shakerzadeh M, Nanoscale Res. Lett., 7, 1 (2012)
- Qian W, Liu T, Wei F, Wang Z, Li Y, Appl. Catal. A: Gen., 258(1), 121 (2004)
- Son S, Lee DH, Kim SD, Sung SW, J. Ind. Eng. Chem., 13(2), 257 (2007)
- Jeong SW, Son SY, Lee DH, Adv. Powder Technol., 21(2), 93 (2010)
- Lee KY, Yeoh WM, Chai SP, Ichikawa S, Mohamed AR, J. Ind. Eng. Chem., 18(4), 1504 (2012)
- Panic S, Bajac B, Rakic S, Kukovecz, Kónya Z, Srdic V, Boskovic G, React. Kinet. Mech. Catal., 122(2), 775 (2017)
- Dubey P, Choi SK, Choi JH, Shin DH, Lee CJ, J. Nanosci. Nanotechnol., 10(6), 3998 (2010)
- Xu X, Huang S, Yang Z, Zou C, Jiang J, Shang Z, Mater. Chem. Phys., 127(1-2), 379 (2011)
- Li Y, Zhang XB, Tao XY, Xu JM, Huang WZ, Luo JH, Luo ZQ, Li T, Liu F, Bao Y, Geise HJ, Carbon N. Y., 43(2), 295 (2005)
- Kibria AKMF, Shajahan M, Mo YH, Kim MJ, Nahm KS, Diam. Relat. Mat., 13(10), 1865 (2004)
- Izadi N, Rashidi AM, Horri BA, Mosoudi MR, Bozorgzadeh HR, Zeraatkar A, Solid State Sci., 13(6), 1242 (2011)
- Santangelo S, Piperopoulos E, Lanza M, Mastronardo E, Milone C, Appl. Catal. A: Gen., 505, 487 (2015)
- Xu JM, Zhang XB, Li Y, Tao XY, Chen F, Li T, Bao Y, Geise HJ, Diam. Relat. Mat., 13(10), 1807 (2004)
- Snoeck JW, Froment GF, Fowles M, J. Catal., 169(1), 240 (1997)
- Amin AM, Croiset E, Epling W, Int. J. Hydrog. Energy, 36(4), 2904 (2011)