- Previous Article
- Next Article
- Table of Contents
Korean Chemical Engineering Research, Vol.60, No.2, 175-183, May, 2022
CaCl2 용융염에서 Ca2+의 Cu 전극에 대한 전기화학적 증착 특성평가
Electrochemical Deposition Characteristics of Ca2+ on Cu Wire Electrode in CaCl2 Molten Salt
E-mail:,
초록
자동차 시장의 확대에 따라 자동차 모터의 필수 소재로 희토류금속인 Nd에 대한 수요가 급증하고 있다. Nd를 제조 하기 위하여 Nd2O3와 Ca계 합금의 열 환원반응에 관한 연구가 활발히 진행되어 왔다. 본 연구에서는 Nd2O3의 환원제 로 사용되는 Ca계 합금인 Ca-Cu를 CaCl2 용융염에서 전기분해반응을 통해 제조하였다. 전기분해반응의 작업 전극과 상대전극으로는 Cu 와이어와 흑연을 각각 사용하였다. 기준전극은 AgCl:CaCl2=1:99 mol%로 혼합한 혼합물에 Ag 와 이어를 넣어 제작하였다. 순환전압 전류법 결과에 의하면 -1.8 V의 전위부터 작업전극의 표면에 Ca2+의 증착이 관찰 되었으며, CaCl2 염의 온도가 증가할수록 Ca2+의 환원전위가 감소하였다. 시간대전류법 실험을 통해 계산된 Ca2+의 확 산계수는 5.4(±6.8)×10-6 cm2/s으로 나타났다. 또한, Cu 전극에 일정한 전위를 가해 Ca-Cu 액상합금을 제조하였으며 제 조된 합금은 EDS line scan을 통해 인가 전위의 증가에 따라 Ca의 전기화학적 삽입이 증가함을 확인하였다. -2.0 V보 다 음의 전위를 인가하여 제조한 Ca-Cu 합금의 조성비는 Ca:Cu=1:4임을 확인하였다.
With the expansion of the automobile market, the demand for Nd as an essential rare earth material for automobile motors is rapidly increasing. Research on the calcio-thermic reduction process between Nd2O3 and calciumbased alloys has been extensively studied in order to manufacture Nd. In this study, Ca-Cu, as a reducing for Nd2O3, was prepared by electrolysis in CaCl2 molten salt. Cu wire and graphite were employed as a working electrode and a counter electrode for electrolysis reaction, respectively. The reference electrode was manufactured by putting Ag wire in a mixture of AgCl and CaCl2 at a ratio of 1:99 mol%. The cyclic voltammetry results showed that the deposition of Ca2+ on the surface of working electrode was observed from a potential of -1.8 V, and the reduction potential of Ca2+ decreased as the reaction temperature increased. The diffusion coefficient of Ca2+ calculated by the chronoamperometry experiment was found to be 5.4(±6.8)×10-6 cm2/s. In addition, Ca-Cu liquid alloy was prepared by applying a constant potential to Cu electrodes. The element ratio of Ca-Cu alloy formed by applying a potential of -2.0 V was found to Ca:Cu=1:4.
- Pillay P, Krishnan R, IEEE Trans. Ind. Electron., 35(4), 537 (1988)
- Herbst JP, Croat JJ, J. Magn. Magn. Mater., 100, 57 (1991)
- Dent PC, Appl. Phys., 111(7), 07A721 (2012)
- Thudum R, Srivastava A, Nandi S, Nagaraj A, Shekhar R, Process. Extr. Metall., 119(2), 88 (2013)
- Ryu HY, Ji HS, Jeong SM, Simpson MF, J. Chem. Eng. Jpn., 47(9), 750 (2014)
- Park HK, Lee JY, Cho SW, Kim JS, Korean Inst. Resources Recycling, 212(3), 74 (2012)
- Lee MW, Choi EY, Jeon SC, Lee J, Park SB, Paek SW, Electrochem. Commun., 72, 23 (2016)
- Lim JG, Jeong SM, Korean Chem. Eng. Res., 53(2), 145 (2015)
- Ji HS, Ryu HY, Choi EY, Cho SW, Simpson MF, Jeong SM, J. Ind. Eng. Chem., 24, 259 (2015)
- Sharma RA, JOM, 39, 33 (1987)
- Firdaus M, Rhamdhani MA, Durandet Y, Rankin WJ, Mcgreogr K, J. Sustain. Metall, 2, 276 (2016)
- Chambers MF, Murphy JE, “Electrolytic Production of Neodymium Metal from a Molten Chloride Electrolyte,” BUREAU OF MINES, RI 9391(1992).
- Sharma RA, Seefurth RN, Electrochem. Soc., 1987-7, 846 (1987)
- Ferro PD, Mishra B, Olson DL, Averill WA, Waste Manage., 17(7), 451 (1997)
- Mohandas KS, Fray DJ, Trans. Indian Inst. Met, 57(6), 579 (2004)
- Mohandas KS, Int. J. Miner., 112(4), 195 (2013)
- George JJ, Academic Press, 376 (1967)
- Fray DJ, JOM, 53, 27 (2001)
- Stefanidaki E, Hasiotis C, Kontoyannis C, Electrochim. Acta, 46(17), 2665 (2001)
- Nasirpouri F, Prot. Met. Phys. Chem. Surf., 47(4), 534 (2011)
- Kolb DM, Adv. Electrochem. Electrochem. Eng., 11, 125 (1978)
- Pauling HJ, Staikov G, Juttner K, J. Electroanal. Chem., 376(1-2), 179 (1994)
- Vishnu SM, Sanil N, Mohandas KS, J. Pure. Appl. Chem., 15(1), 1 (2017)
- Bort K, Juttner WJ, Staikov G, Budevski E, Electrochim. Acta
- Cavalieri O, Bittner AM, Kind H, Kern K, Greber T, Z. Phys. Chem., 208, 107 (1999)
- Danilov AI, Molodkina EB, Polukarov YM, Russ. J. Electrochem., 34, 1249 (1998)
- Chakrabarti DJ, Laughlin DE, Bull. Alloy Phase Diagrams, 5, 570 (1984)
- Jeong SM, Shin HS, Cho SH, Hur JM, Lee HS, Electrochim. Acta, 55(5), 1749 (2010)
- Ozdirik B, Baert K, Depover T, Vereecken J, Verbeken K, Terryn H, Graeve ID, J. Electrochem. Soc., 164(13), C747 (2017)
- Danilov AI, Molodkina EB, Polukarov, Rudnev, AV, Polukarov YM, Feliu JM, Electrochim. Acta, 50, 5032 (2000)
- Danilov AI, Molodkina EB, Polukarov YM, Climent V, Feliu JM, Electrochim. Acta, 46, 3137 (2001)
- Yasuda K, Shimano T, Hagiwara R, Homma T, Nohira T, J. Electrochem. Soc., 164(8), H5049 (2017)