화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.32, No.4, 181-185, April, 2022
Impedance Properties of Phase-Pure Titanium Dioxide Ceramics Sintered at Different Temperatures
E-mail:
In this study, phase-pure titanium dioxide TiO2 ceramics are sintered using standard high-temperature solid-state reaction technique at different temperatures (1,000, 1,100, 1,200, 1,300, 1,400 ℃). The effect of sintering temperature on the densification and impedance properties of TiO2 ceramics is investigated. The bulk density and average grain size increase with the increase of sintering temperature. Impedance spectroscopy analysis (complex impedance Z * and complex modulus M *), performed in a broad frequency range from 100 Hz to 10 MHz, indicates that the TiO2 ceramics are dielectrically heterogeneous, consisting of grains and grain boundaries. The complex impedance Z *-plane indicates the resistance of grains of the TiO2 ceramics increases with increasing sintering temperature, while that of grain boundaries develops in the opposing direction. The complex modulus M *-plane shows a grain capacitance that seems to be independent of the sintering temperature, while that of the grain boundaries decreases with increasing sintering temperature. These results suggest that different sintering temperatures have effects on the microstructure, leading to changes in the impedance properties of TiO2 ceramics.
  1. Mosaddeq-ur-Rahman M, Yu G, Soga T, Jimbo T, Ebisu H, Umeno M, J. Appl. Phys., 88, 4634 (2000)
  2. Hsieh CC, Wu KH, Juang JY, Uen TM, Lin JY, Gou YS, J. Appl. Phys., 92, 2518 (2002)
  3. Paz Y, Luo Z, Rabenberg L, Heller A, J. Mater. Res., 10, 2842 (1995)
  4. Granqvist CG, Sol. Energy Mater. Sol. Cells, 60, 201 (2007)
  5. Song YS, Lee MH, Kim BY, Lee DY, J. Ceram. Process. Res., 20, 182 (2019)
  6. Huang SY, Schlichthörl G, Nozik AJ, Grätzel M, Frank AJ, J. Phys. Chem. B, 101, 2576 (1997)
  7. Ferroni M, Carotta MC, Guidi V, Martinelli G, Ronconi F, Richard O, Dyck DV, Landuyt JV, Sens. Actuators B-Chem., 68, 140 (2020)
  8. Ito A, Masumoto H, Goto T, Mater. Trans., 44, 1599 (2003)
  9. Kim BM, Kim JS, Korean J. Mater. Res., 28, 620 (2018)
  10. Lee JH, Lee YK, Kim YJ, Oh HJ, Korean J. Mater. Res., 31, 552 (2021)
  11. Reszczynska J, Grzyb T, Sobczak JW, Lisowski W, Gazda M, Ohtani B, Zaleska A, Appl. Surf. Sci., 307, 333 (2014)
  12. Srinivasan TK, Panigrahi BS, Suriyamurthy N, Parida PK, Venkatraman B, J. Rare Earths, 33, 20 (2015)
  13. Xing G, Zhang Z, Qi S, Zhou G, Zhang K, Cui Z, Feng Y, Shan Z, Meng S, Opt. Mater., 75, 102 (2018)
  14. Holzwarth Y, Gibson N, Nat. Nanotechnol., 6, 534 (2011)
  15. Hong YS, Park HB, Kim SJ, J. European Ceram. Soc., 18, 613 (1998)
  16. Chen TY, Chu SY, Juang YD, Sens. Actuators A-Phys., 102, 6 (2002)
  17. Chu SY, Chen TY, Tsai IT, Integr. Ferroelectr., 58, 1293 (2003)
  18. Yimnirun R, Tipakontitikul R, Ananta S, Int. J. Mod. Phys. B, 20, 2415 (2006)
  19. Chen Y, Chang Y, Ferroelectrics, 383, 183 (2009)
  20. Sinclair DC, West AR, J. Mater. Sci., 29, 6061 (1994)
  21. Sinclair DC, West AR, J. Appl. Phys., 66, 3850 (1989)
  22. Hodge IM, Ingram MD, West AR, J. Electroanal. Chem., 74, 125 (1976)