화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.110, 137-149, June, 2022
Characterization of highly stable water-based magnetorheological gel using OPTIGEL-WX as an additive: The study of magneto-induced rheological and viscoelastic properties
In this work novel kinds of highly stable MR gels were prepared by suspending flake-shaped micron-sized carbonyl iron (CI) particles into water/OPTIGEL-WX suspension, OPTIGEL-WX is a promising additive that forms a gel-like structure with water. We found that surface tension decreases when the concentration of OPTIGEL-WX was raised, and the contact angle increased due to a stronger adhesive force at the liquid– air interface between the host liquid molecules and the CI particles. We examined magneto-induced rheological and viscoelastic properties using Anton-Paar (MCR-102) rheometer. The theoretical Bingham model was used to fit the experimental shear stress versus shear rate curves and observed static and dynamic yield stress values were substantially identical. Amplitude sweep showed that the linear viscoelastic region (LVE) was obtained approximately at 0.1% of shear strain. A crossover point, modulus (G' & G-) , and yield stress were enhanced as the magnetic field was increased. Frequency sweep showed that the storage modulus shows an increasing trend with the increase of frequency at first, while at higher frequency range storage modulus shows a steady plateau area. Time-dependent shear flow and amplitude sweep tests revealed complete reversibility of rheological and viscoelastic properties of the MR gel with time after destroying the microstructures.
  1. Farjoud A, Ahmadian M, Mahmoodi N, Zhang X, Craft M, Smart Mater. Struct., 20(8), 14 (2011)
  2. Maurya CS, Sarkar C, IEEE Trans. Magn., 56(12) (2020)
  3. Maurya CS, Sarkar C, J. Intell. Mater. Syst. Struct. (2021)
  4. Ronzova A, Sedlacik M, Cvek M, Soft Matter, 17(5), 1299 (2021)
  5. Maurya CS, Sarkar C, Rheol. Acta, 60(5), 277 (2021)
  6. Cvek M, Mrlik M, Pavlinek V, J. Rheol., 60(4), 687 (2016)
  7. Shekhar C, Chiranjit M, Rheol. Acta (2021)
  8. Dorosti AH, Ghatee M, Nouroozi M, J. Magn. Magn. Mater., 498, 166193 (2019)
  9. Maurya CS, Sarkar C, IEEE Trans. Magn., 9464, 1 (2020)
  10. An HN, Picken SJ, Mendes E, Soft Matter, 8(48), 11995 (2012)
  11. Zhang G, Li Y, Wang H, Wang J, Front. Mater., 6, 2019 (1)
  12. Wilson MJ, Fuchs A, Gordaninejad F, J. Appl. Polym. Sci., 84, 2733 (2002)
  13. Fuchs A et al., J. Appl. Polym. Sci., 92(2), 1176 (2004)
  14. Xu Y, Gong X, Xuan S, Smart Mater. Struct., 22(7), 075029 (2013)
  15. Mitsumata T, Abe N, Smart Mater. Struct., 20(12), 124003 (2011)
  16. Ju B, Yu M, Fu J, Zheng X, Liu S, Ind. Eng. Chem. Res., 52(33), 11583 (2013)
  17. Bica D et al., J. Magn. Magn. Mater., 311, 17 (2007)
  18. Rich JP, Doyle PS, McKinley GH, Rheol. Acta, 51(7), 579 (2012)
  19. Kordonski WI, System for abrasive jet shaping and polishing of a surface using magnetorheological fluid. Internal Application Published Under the Patent Cooperation Treaty (PCT), 1999.
  20. Dyke SJ, Spencer BF Jr, Sain MK, Carlson JD, Smart Mater. Struct., 5, 565 (1996)
  21. Chen B, Huang D, Li C, Chen C, Front. Mater., 6 (2019)
  22. De Vicente J, Klingenberg DJ, Hidalgo-Alvarez R, Soft Matter, 7(8), 3701 (2011)
  23. Rankin PJ, Horvath AT, Klingenberg DJ, Rheol. Acta, 38(5), 471 (1999)
  24. Ginder JM, Behavior of Magnetorheologicalfluids. pp. 1–4, 1998.
  25. Ashtiani M, Hashemabadi SH, J. Intell. Mater. Syst. Struct., 26(14), 1887 (2015)
  26. Hato MJ, Choi HJ, Sim HH, Park BO, Ray SS, Colloids Surf. A: Physicochem. Eng. Asp., 377(1-3), 103 (2011)
  27. Turczyn R, Kciuk M, Turczyn R, Kciuk M, J. Achiev. Mater. Manuf. Eng., 27(2), 131 (2008)
  28. Upadhyay RV, Laherisheth Z, Shah K, Smart Mater. Struct., 23(1) (2013)
  29. Lee JY, Kwon SH, Choi HJ, Korea-Aust. Rheol. J., 31(1), 41 (2019)
  30. Data P, ‘‘OPTIGEL-WX,” Data Sheet, BYK Additives & Instruments, no. 10. 2016.
  31. Carlson JD, J. Intell. Mater. Syst. Struct., 13(7-8), 431 (2002)
  32. de Vicente J, Vereda F, Segovia-Gutiérrez JP, del Puerto Morales M, Hidal, J. Rheol., 54(6), 1337 (2010)
  33. Bell RC, Miller ED, Karli JO, Vavreck AN, Zimmerman DT, Int. J. Mod. Phys. B, 21(28-29), 5018 (2007)
  34. Olabi AG, Grunwald A, Mater. Des., 28(10), 2658 (2007)
  35. Guba S, Horváth B, Szalai I, J. Magn. Magn. Mater., 498 (2020)
  36. Moldoveanu GM, Ibanescu C, Danu M, Minea AA, J. Mol. Liq., 253, 188 (2018)
  37. Maurya CS, Sarkar C, J. Intell. Mater. Syst. Struct., 32(14), 1624 (2021)
  38. Berry JD, Neeson MJ, Dagastine RR, Chan DYC, Tabor RF, J. Colloid Interface Sci., 454, 226 (2015)
  39. Liu H, Cao G, Sci. Rep., 6, 1 (2016)
  40. Aruna MN, Rahman MR, Joladarashi S, Kumar H, Devadas Bhat P, J. Magn. Magn. Mater., 529, 167910 (2021)
  41. Hassan MR, Wang C, Langmuir, 37(45), 13331 (2021)
  42. Samin PM, Leong SAN, Rahman AHA, Idris A, Mazlan SA, Smart Mater. Struct., 25(2), 025025 (2016)
  43. Nugroho KC et al., Smart Mater. Struct., 29(11), 114004 (2020)
  44. Wang G et al., J. Mol. Liq., 336, 116389 (2021)
  45. Choi J, Han S, Nam KT, Seo Y, ACS Appl. Nano Mater., 3(11), 10931 (2020)
  46. Wang G, Ma Y, Tong Y, Dong X, Smart Mater. Struct., 25, 035028 (2016)
  47. Mao R, Wang H, Zhang G, Ye X, Wang J, RSC Adv., 10(53), 31691 (2020)
  48. Fan Y, Xie L, Yang W, Sun B, J. Appl. Phys., 129, 20 (2021)
  49. Yang P, Yu M, Luo H, Fu J, Qu H, Xie Y, Appl. Surf. Sci., 416, 772 (2017)