화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.110, 198-205, June, 2022
Surfactant assisted geometric barriers on PtNi@C electrocatalyst for phosphoric acid fuel cells
E-mail:,
The alloying strategy of Pt with Ni is commonly employed to improve the catalytic activity of electrocatalysts owing to the higher activity required to lower the binding energy of oxygen with Pt. When Pt is alloyed with Ni, electron transfer from Ni to Pt is conducive to metallic Pt, lowering the oxygen binding energy. Although the alloying strategy can increase the catalytic activity, confirming that the surface state has the intended electronic structure is difficult because of the oxidation or dissolution of metals. To determine the surface state of catalyst nanoparticles for a more efficient structure, the concept of physical blocking of the reactive surface was applied to determine the geometric effect. The oxygen reduction reaction in phosphoric acid electrolytes is more sensitive to the geometric effect due to anion adsorption. In this work, we synthesized carbon-supported PtNi alloying nanoparticles with different carbon shell thicknesses (PtNi@Cx; x = 0.5, 1, 2, 4, where x refers to the concentration of the surfactant) from various concentration of organic surfactants. Among the nanoparticles with various carbon shell thicknesses, PtNi@C2 showed the best oxygen reduction reaction performance in the presence of phosphoric acid with an appropriate geometric effect, ensuring a synergetic effect with alloying.
  1. Jin H, Ruqia B, Park Y, Kim HJ, Oh H, Choi S, Lee K, Adv. Energy Mater., 11, 2003188 (2021)
  2. Okonkwo EC, Al-Breiki M, Bicer Y, Al-Ansari T, Int. J. Hydrog. Energy, 46, 35525 (2021)
  3. Jang I, Im K, Shin H, Lee KS, Kim H, Kim J, Yoo SJ, Nano Energy, 78, 105151 (2020)
  4. Liu J, Choi HJ, Meng LY, J. Ind. Eng. Chem., 64, 1 (2018)
  5. Suter TAM, Smith K, Hack J, Rasha L, Rana Z, Angel GMA, Shearing PR, Miller TS, Brett DJL, Adv. Energy Mater., 11, 2101025 (2021)
  6. Tzelepis S, Kavadias KA, Marnellos GE, Xydis G, Renew. Sust. Energ. Rev., 151, 111543 (2021)
  7. Stonehart P, Berichte Der Bunsengesellschaft Für Phys. Chem., 94, 913 (1990)
  8. Perry ML, Fuller TF, J. Electrochem. Soc., 149, S59 (2002)
  9. Wilailak S, Yang JH, Heo CG, Kim KS, Bang SK, Seo IH, Zahid U, Lee CJ, Energy, 220, 119744 (2021)
  10. Araya SS, Zhou F, Liso V, Sahlin SL, Vang JR, Thomas S, Gao X, Jeppesen C, Kær SK, Int. J. Hydrog. Energy, 41, 21310 (2016)
  11. Yang P, Zhang H, Hu Z, Int. J. Hydrog. Energy, 41, 3579 (2016)
  12. Kirubakaran A, Jain S, Nema RK, Renew. Sust. Energ. Rev., 13, 2430 (2009)
  13. Neyerlin KC, Singh A, Chu D, J. Power Sources, 176, 112 (2008)
  14. Liu Z, Wainright JS, Litt MH, Savinell RF, Electrochim. Acta, 51, 3914 (2006)
  15. Zhang J, Tang Y, Song C, Zhang J, J. Power Sources, 172, 163 (2007)
  16. Khalil M, Kadja GTM, Ilmi MM, J. Ind. Eng. Chem., 93, 78 (2021)
  17. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H, J. Phys. Chem. B, 108, 17886 (2004)
  18. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN, Fuel Cells, 1, 105 (2001)
  19. Liu Z, Ma L, Zhang J, Hongsirikarn K, Goodwin JG, Catal. Rev.-Sci. Eng., 55, 255 (2013)
  20. Lee S, Jang JH, Jang I, Choi D, Lee KS, Ahn D, Kang YS, Park HY, Yoo SJ, J. Catal., 379, 112 (2019)
  21. Jang I, Lee S, Lee E, Lee DW, Park HY, Choi BB, Ham HC, Yoo SJ, Nano Today, 41, 101316 (2021)
  22. Huang X, Zhao Z, Cao L, Chen Y, Zhu E, Lin Z, Li M, Yan A, Zettl A, Science, 348, 1230 (2015)
  23. Ze H, Chen X, Wang XT, Wang YH, Chen QQ, Lin JS, Zhang YJ, Zhang XG, Tian ZQ, Li JF, J. Am. Chem. Soc., 143, 1318 (2021)
  24. Su HY, Gu XK, Ma X, Zhao YH, Bao XH, Li WX, Catal. Today, 165, 89 (2011)
  25. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J, Chem. Soc. Rev., 39, 2184 (2010)
  26. Ferrando R, Jellinek J, Johnston RL, Chem. Rev., 108, 845 (2008)
  27. Hwang SJ, Kim SK, Lee JG, Lee SC, Jang JH, Kim P, Lim TH, Sung YE, Yoo SJ, J. Am. Chem. Soc., 134, 19508 (2012)
  28. Stephens IEL, Bondarenko AS, Grønbjerg U, Rossmeisl J, Chorkendorff I, Energy Environ. Sci., 5, 6744 (2012)
  29. Zhang J, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR, J. Am. Chem. Soc., 127, 12480 (2005)
  30. Matin MA, Lee J, Kim GW, Park HU, Cha BJ, Shastri S, Kim G, Kim YD, Kwon YU, Petkov V, Appl. Catal. B: Environ., 267, 118727 (2020)
  31. He Q, Shyam B, Nishijima M, Ramaker D, Mukerjee S, J. Phys. Chem. C, 117, 4877 (2013)
  32. Strickland K, Pavlicek R, Miner E, Jia Q, Zoller I, Ghoshal S, Liang W, Mukerjee S, ACS Catal., 8, 3833 (2018)
  33. Strmcnik D, Escudero-Escribano M, Kodama K, Stamenkovic VR, Cuesta A, Markovic NM, Nat. Chem., 2, 880 (2010)
  34. Deng YJ, Wiberg GKH, Zana A, Arenz M, Electrochim. Acta, 204, 78 (2016)
  35. Chung YH, Kim SJ, Chung DY, Park HY, Sung YE, Yoo SJ, Jang JH, Chem. Commun., 51, 2968 (2015)
  36. Jeong DC, Mun B, Lee H, Hwang SJ, Yoo SJ, Cho E, Lee Y, Song C, RSC Adv., 6, 60749 (2016)
  37. Lu L, Zou S, Fang B, ACS Catal., 11, 6020 (2021)
  38. Mourdikoudis S, Liz-Marzán LM, Chem. Mater., 25, 1465 (2013)
  39. Lee KS, Park HY, Chung YH, Yoo SJ, Nam SW, Ahn D, Sung NE, Jang JH, J. Power Sources, 290, 130 (2015)
  40. Jang JH, Jeffery AA, Min J, Jung N, Yoo SJ, Nanoscale, 13, 15116 (2021)
  41. Fan J, Chen J, Chen Y, Huang H, Wei Z, Zheng M, Dong Q, J. Mater. Chem. A, 2, 4870 (2014)
  42. Liu Z, Shamsuzzoha M, Ada ET, Reichert WM, Nikles DE, J. Power Sources, 164, 472 (2007)
  43. Bezerra CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J, J. Power Sources, 173, 891 (2007)
  44. Schmidt TJ, Paulus UA, Gasteiger HA, Behm RJ, J. Electroanal. Chem., 508, 41 (2001)
  45. Lu L, Li R, Fujiwara K, Yan X, Kobayashi H, Yi W, Fan J, J. Phys. Chem. C, 120, 11572 (2016)
  46. Li H, Ren C, Xu S, Wang L, Yue Q, Li R, Zhang Y, Xue Q, Liu J, J. Mater. Chem. A, 3, 5850 (2015)
  47. Zhang X, Wang H, Key J, Linkov V, Ji S, Wang X, Lei Z, Wang R, J. Electrochem. Soc., 159, B270 (2012)