Macromolecular Research, Vol.30, No.5, 295-304, May, 2022
Flexural Properties of Polyetheretherketone Composites Containing Hydroxyapatite, Graphene Oxide, and Carbon Fiber for Spinal Implant Materials
E-mail:
Because of its good biocompatibility and low elastic modulus, polyetheretherketone (PEEK) is gaining increasing attention as an alternative to metallic spinal implants; however, its applications are limited due to its bioinertness, hydrophobicity, and poor mechanical properties compared to those of human cortical bone. The aim of this study was to develop a PEEK composite with improved bioactivity and flexural properties by incorporating hydroxyapatite (HA), graphene oxide (GO), and carbon fiber (CF) as fillers. In this study, we have attempted to minimize the CF content and maximize the HA content to ensure high bioactivity and hydrophilicity. HA and GO were modified with a silane coupling agent to enhance their dispersion in and interfacial adhesion with the PEEK matrix. The filler content was optimized with 0.5 wt% of modified GO (m-GO), 30 wt% of modified HA (m-HA), and 10 wt% of CF to yield a PEEK composite with flexural properties comparable to those of the human cortical bone. The in vitro bioactivity test and the water contact angle measurement confirmed that the composite was bioactive and had a hydrophilic surface, respectively. This unique PEEK/m-GO/m-HA/CF composite could potentially yield an effective design strategy for the development of high-performance PEEK biocomposites.
Keywords:Polyetheretherketone composites;Hydroxyapatite;Graphene oxide;Carbon fiber;Flexural properties
- Majd ME, Vadhva M, Holt RT, Spine, 24, 1604 (1999)
- Warburton A, Girdler SJ, Mikhail CM, Ahn A,Cho SK, Neurospine, 17, 101 (2020)
- Hench LL, An Introduction to Bioceramics, Imperial College Press 2013.
- Monich PR, Henriques B, de Oliveira APN, Souza JCM, Fredel MC, Mater. Lett., 185, 593 (2016)
- Kurtz SM, Devine JN, Biomaterials, 28, 4845 (2007)
- Boudeau N, Liksonov D, Barriere T, Maslov L, Gelin JC, Mater. Des., 40, 148 (2012)
- Wang L, Weng L, Song S, Zhang Z, Tian S, Ma R, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 528, 3689 (2011)
- Wang L, Weng L, Song S, Sun Q, Mater. Lett., 64, 2201 (2010)
- Pan YS, Shen QQ, Chen Y, Yu K, Pan CL, Zhang L, Mater. Technol., 30, 257 (2014)
- Wong KL, Wong CT, Liu WC, Pan HB, Fong MK, Lam WM, Cheung WL, Tang WM, Chiu KY, Luk KD, Lu WW, Biomaterials, 30, 3810 (2009)
- Deng Y, Zhou P, Liu X, Wang L, Xiong X, Tang Z, Wei J, Wei S, Colloids Surf. B: Biointerfaces, 136, 64 (2015)
- Li K, Yeung CY, Yeung KWK, Tjong SC, Adv. Eng. Mater., 14, B155 (2012)
- Pan Y, Chen Y, Shen Q, J. Mater. Sci. Technol., 32, 34 (2016)
- Ma R, Weng L, Bao X, Ni Z, Song S, Cai W, Mater. Lett., 71, 117 (2012)
- Liuyun J, Lixin J, Chengdong X, Lijuan X, Ye L, J. Biomater. Appl., 30, 750 (2016)
- Hong Z, Qiu X, Sun J, Deng M, Chen X, Jing X, Polymer, 45, 6699 (2004)
- Petisco-Ferrero S, Álvarez LP, Ruiz-Rubio L, Vilas Vilela JL, Sarasua JR, Compos. Sci. Technol., 161, 66 (2018)
- Rakmae S, Ruksakulpiwat Y, Sutapun W, Suppakarn N, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 32, 1428 (2012)
- Ma R, Li Q, Wang L, Zhang X, Fang L, Luo Z, Xue B, Ma L, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 73, 429 (2017)
- Rakmae S, Ruksakulpiwat Y, Sutapun W, Suppakarn N, J. Compos. Mater., 45, 1259 (2010)
- Sandler J, Werner P, Shaffer MS, Demchuk V, Altstädt V, Windle AH, Compos. Pt. A-Appl. Sci. Manuf., 33, 1033 (2002)
- Wang A, Lin R, Polineni V, Essner A, Stark C, Dumbleton J, Tribol. Int., 31, 661 (1998)
- Rezaei F, Yunus R, Ibrahim NA, Mahdi ES, Polym. -Plast. Technol. Eng., 47, 351 (2008)
- Das TK, Ghosh P, Das NC, Adv. Compos. Mater., 2, 214 (2019)
- Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD, Acta Biomater., 10, 2907 (2014)
- Pang W, Ni Z, Chen G, Huang G, Huang H, Zhao Y, RSC Adv., 5, 63063 (2015)
- He M, Chen X, Guo Z, Qiu X, Yang Y, Su C, Jiang N, Li Y, Sun D, Zhang L, Compos. Sci. Technol., 174, 194 (2019)
- Chen Y, Qi Y, Tai Z, Yan X, Zhu F, Xue Q, Eur. Polym. J., 48, 1026 (2012)
- Chon JW, Yang X, Lee SM, Kim YJ, Jeon IS, Jho JY, Chung DJ, Polymer, 11, 1803 (2019)
- Wang S, Wen S, Shen M, Guo R, Cao X, Wang J, Shi X, Int. J. Nanomed., 6, 3449 (2011)
- Toworfe GK, Composto RJ, Shapiro IM, Ducheyne P, Biomaterials, 27, 631 (2006)
- Tanahashi M, Matsuda T, J. Biomed. Mater. Res., 34, 305 (1997)
- Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I, J. Electron. Spectrosc., 195, 145 (2014)
- Graf N, Yegen E, Gross T, Lippitz A, Weigel W, Krakert S, Terfort A, Unger WES, Surf. Sci., 603, 2849 (2009)
- Wan Y, Xiong G, Luo H, He F, Huang Y, Zhou X, Mater. Des., 29, 2034 (2008)
- Crawford RP, Keaveny TM, Spine, 29, 2248 (2004)
- Peng S, Feng P, Wu P, Huang W, Yang Y, Guo W, Gao C, Shuai C, Sci. Rep., 7, 46604 (2017)
- Bakar MA, Cheang P, Khor K, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 345, 55 (2003)
- Wang M, Joseph R, Bonfield W, Biomaterials, 19, 2357 (1998)
- Wang M, Porter D, Bonfield W, Brit. Ceram. T, 93, 91 (1994)
- Abu Bakar MS, Cheng MHW, Tang SM, Yu SC, Liao K, Tan CT, Khor KA, Cheang P, Biomaterials, 24, 2245 (2003)
- Chan KW, Liao CZ, Wong HM, Yeung KWK, Tjong SC, RSC Adv., 6, 19417 (2016)
- Keller T, Mao Z, Spengler D, J. Orthop. Res., 8, 592 (1990)
- Kim HM, Himeno T, Kokubo T, Nakamura T, Biomaterials, 26, 4366 (2005)
- Huang R, Shao P, Burns C, Feng X, J. Appl. Polym. Sci., 82, 2651 (2001)
- Menzies KL, Jones L, Optom. Vis. Sci., 87, 387 (2010)
- Briem D, Strametz S, Schröoder K, Meenen N, Lehmann W, Linhart W, Ohl A, Rueger J, J. Mater. Sci. -Mater. Med., 16, 671 (2005)