화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.53, No.1, 75-81, 1995
Sulfate Decomposition by Bacterial Leaching
Sulfate disposal is the main problem of many industrial effluents, such as excess sulfuric acid, gypsum, coal desulfurization byproducts, acid-mine waters, and general metallurgical effluents. It has been established that sulfate present in wastes can be converted to elemental sulfur by bacterial mutualism. This study presents the results of an investigation of the industrial feasibility of utilizing a biological system capable of converting hydrous calcium sulfate (gypsum) to elemental sulfur. Gypsum, which was used in this study, is a byproduct of the fertilizer industry. The biological system is referred to as a bacterial mutualism, and involves Desulfovibrio desulfuricans for sulfate conversion and Chlorobium thiosulfatophilum for hydrogen sulfide conversion. Bacterial mutualism and utilization of sulfate were investigated by means of a two-stage anaerobic system. In the first stage, a gas purge system was used for sulfate conversion to sulfide, and it was found that maximum conversion is 34%. In the second stage, a static culture system was used for sulfide conversion to sulfur with a conversion of 92%.