Applied Biochemistry and Biotechnology, Vol.68, No.1-2, 57-68, 1997
Diffusion and Transfer of Antibody Proteins from a Sugar-Based Hydrogel
Diffusion of antibody protein from hydrogel films and hydrogel encapsulated in a microcapillary was studied. Thin hydrogel films were formed by crosslinking 6-acryloyl-B-O-methylgalactoside with N,N’-methylene-bis-acrylamide and the diffusive transport of monoclonal antimouse IgG-FITC into and out of the hydrated films was measured. Diffusion coefficients in 2 and 4% crosslinked hydrogel films were measured. The measured diffusion constants determined for IgG in both the 2 and 4% hydrogel films were comparable to the free diffusion of IgG in bulk water (D-mean similar to 10(-7)cm(2)/s). In addition, 2% crosslinked hydrogels were prepared in a capillary tube and the transport of antimouse IgG-FITC into and out of the hydrated hydrogel was measured. Kinetic analysis indicated that the protein transport through the capillary hydrogel was faster than would be expected for a simple diffusion process. Finally, by utilizing the diffusion of antibody from the capillary hydrogel, transfer of antibody to a silica surface was demonstrated. A capillary hydrogel loaded with antimouse IgG-FITC was used to transfer the protein to a silica surface forming a 30-mu m spot of antibody, which was ima,oed using fluorescence microscopy. These results may lead to the development of a nonlithographic method of patterning antibodies on surfaces for use in integrated microimmunosensors.