Materials Research Bulletin, Vol.30, No.9, 1089-1096, 1995
A Study of High T-C Superconducting Ceramic/Metal Alloy Composites
High-T-c superconducting ceramic YBa2Cu3O7-x/metal alloy composites were fabricated. The metal matrix was a low melting point alloy of bismuth, lead, tin, cadmium and indium. The structure, DC electrical resistivity, AC magnetic susceptibility, levitation and mechanical strength of the composites were investigated. The influence of filler content on these properties was also studied. The composites behaved as a typical metal with the resistivity increasing with temperature increase and, further, did not undergo the characteristic superconducting transition to zero resistance that is obtained with the ceramic superconductor. On the other hand, the diamagnetic properties of the superconducting ceramic were preserved in the composites. The values of diamagnetic susceptibility and levitation force increase with the volume fraction of the superconducting material. The flexural strength of the composites is improved significantly in comparison with the ceramic superconductor.