화학공학소재연구정보센터
Nature, Vol.367, No.6462, 447-450, 1994
Rapid Interglacial Climate Fluctuations Driven by North-Atlantic Ocean Circulation
RECENT data from the GRIP ice core1-3 in Greenland suggest that the climate of the last (Eemian) interglacial period was much less stable than that of the present interglacial. Rapid transitions between warm and cold periods were found to occur on timescales of just a few decades. The North Atlantic climate during the Eemian period was also shown to be characterized by three states, respectively warmer than, similar to and colder than today1,2. Recent data from the nearby GISP2 ice core have revealed some discrepancies with these findings, which remain to be resolved4,5. Here we present simulations using an idealized global ocean model, which suggest that the North Atlantic ocean has three distinct circulation modes, each of which corresponds to a distinct climate state. We find that adding a simple random component to the mean freshwater flux (which forces circulation) can induce rapid transitions between these three modes. We suggest that increased variability in the hydrological cycle associated with the warmer Eemian climate could have caused transition between these distinct modes in the North Atlantic circulation, which may in turn account for the apparent rapid variability of the Eemian climate.