Plasma Chemistry and Plasma Processing, Vol.18, No.2, 189-214, 1998
On the correlation between deposition rate and process parameters in remote plasma-enhanced chemical vapor deposition
Plasma-enhanced chemical vapor deposition has become one of the most important thin film deposition technologies. To avoid direct plasma exposure the substrates may be placed in the remote region. A carrier gas conveys the plasma energy to the deposition area where the reactions with the monomer molecules take place. For the Engineering of such a process the modeling of the achievable deposition rate is of great interest. Among different possibilities semiempirical models provide a fast and easily utilizable tool without intensive computer simulations or the necessity of detailed knowledge about the chemistry involved From deposition experiments with oxygen and an organosilicon monomer (hexamethyldisiloxane, HMDSO) the remote composite parameter is suggested. It combines microwave power, monomer and carrier gas flow rate, and the distance of the substrate from the plasma source. This parameter was derived from the ratio between atomic oxygen and monomer flow rate. In the parameter range considered the deposition rate is described as well ordered and the energy-and monomer-deficient regions are clearly separated.