화학공학소재연구정보센터
Plasma Chemistry and Plasma Processing, Vol.19, No.3, 341-362, 1999
Modeling and spectroscopic investigations on the evaporation of zirconia in a thermal rf plasma
The evaporation process of zirconia powders injected in a thermal rf plasma is investigated. Both model calculations and optical emission spectroscopy are used to study the evaporation behavior. Gas temperatures and velocity distributions are determined numerically from conservation laws and Maxwell equations. The influence of plasma and particle parameters on the thermal history of entrained particles is discussed. Asymmetric Abel inversion is applied to detect asymmetric emission profiles in the plasma source. Spectroscopic measurements reveal that evaporated zirconium is concentrated near the axis of the plasma. Numerical calculations show that line-integrated emission profiles can be used to distinguish the cases of complete and incomplete evaporation. Axial emission profiles confirm that the evaporation zone is shifted upstream of the plasma when smaller precursor particles are used.