Polymer, Vol.39, No.10, 1991-1998, 1998
Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges
A high-temperature-vulcanized polydimethylsiloxane (PDMS) elastomer has been subjected to corona discharges for different periods of time in dry air. The loss and recovery of hydrophobicity of the surface have been characterized by contact angle measurements. Immediately after exposure to corona discharges, samples showed a low surface hydrophobicity and, on storage in dry air, a continuous increase in hydrophobicity finally approaching the hydrophobicity of the unexposed material. The activation energy of the hydrophobicity recovery was two to four times greater than the activation energy of the diffusivity of low molar mass PDMS in PDMS elastomers, indicating that the diffusivity properties of the oxidized surface layer were different from that of the bulk. PDMS elastomers quenched in liquid nitrogen or subjected to small mechanical deformation (<1% strain) after exposure to corona discharges for 1 h or more recovered their hydrophobicity faster than untouched specimens kept under identical conditions. X-ray photoelectron spectroscopy confirmed the early formation of a silica-like surface layer, with a thickness of at least 10-12 nm. The atomic composition of the oxidized surface layer remained essentially unchanged after the first hour of corona discharges. It is suggested that the silica-like surface layer delayed the recovery of hydrophobicity by inhibiting the transport of low molar mass PDMS to the surface. It is also suggested that thermally or purely mechanically induced stresses lead to a cracking of the brittle silica-rich layer and that this in turn facilitates the transport of low molar mass PDMS to the surface and to a more rapid recovery of the hydrophobicity. Data obtained by reflection infrared spectroscopy assessing the outermost micrometer, confirmed the oxidation and the formation of hydroxyl groups at a progressively higher concentration with increasing exposure time of corona discharges.