화학공학소재연구정보센터
Polymer, Vol.40, No.1, 243-251, 1999
Molecular orientation in crystalline miscible blends
The orientation induced by stretching uniaxially in the solid state two semi-crystalline miscible blends of poly(epsilon-caprolactone) (PCL) with poly(vinyl chloride) (PVC) and poly(styrene-co-acrylonitrile) (SAN) was investigated by infrared dichroism. In both cases, the deformation of the solution-cast films, having a high PCL crystallinity degree of about 50% and containing up to about 40 wt% of PVC or SAN, leads rapidly to a very high segmental orientation for the crystalline PCL as a result of a structural transformation from lamellae to microfibrils. Meanwhile, the amorphous components, being miscible and located in the interlamellar regions inside the spherulites, show a much lower orientation as compared with the crystalline PCL regardless of the blend composition. SAN is found to orient to the same degree as the amorphous PCL in the PCL/SAN blends, while the orientation of PVC is higher than that of the amorphous PCL in the PCL/PVC blends. Furthermore, the slow crystallization of PCL in blends containing around 40% of PVC made it possible to follow the orientation behaviour as a function of the crystallization time by stretching a series of films before and after the crystallization of PCL started. It was found that, even with as little crystalline PCL as 5% of the total blend weight, the stretching-induced crystalline orientation is almost as high as for the samples with high degrees of crystallinity. A stretching-induced crystallization forming microfibril-like crystallites of PCL is suggested to be at the origin of the high crystalline orientation for those blends, which have a dominant proportion of amorphous components during the stretching, instead of the transformation of existing lamellae to the microfibrillar structure for stretched highly crystalline blends.