- Previous Article
- Next Article
- Table of Contents
Applied Microbiology and Biotechnology, Vol.49, No.3, 343-349, 1998
Biodegradation of nitrobenzene by its simultaneous reduction into aniline and mineralization of the aniline formed
By mixing through a three-reactor system a nitroreducing consortium and an aniline-degrading Comamonas acidovorans, a mixed population was formed which was able to mineralize the nitroaromatic compound nitrobenzene via aniline, its corresponding aminoaromatic compound. The behavior of the mixed population was characterized in batch culture. In the first step, nitrobenzene was reduced to aniline by the reductive consortium and, in the second, oxidative step, aniline was mineralized via catechol and meta cleavage. Even though these two steps may seem incompatible in terms of required redox conditions, they were made to coexist in a single, simple reactor. However, when aeration was optimum for growth, only 16% of the 0.5 mM nitrobenzene introduced was mineralized. Decreasing the aeration led to an increase in the amount of nitrobenzene reduced and decreased its volatilized fraction. A decrease in aeration did not slow down aniline mineralization, although the latter is catalyzed by dioxygenases. This mixed population is thus able to remediate nitrobenzene and also aniline, which is often found with the former in the environment. Using C. acidovorans, which also degrades methylanilines, or other aminoaromatic-compound-degrading organisms, this strategy should be applicable to mineralizing more complex nitroaromatic compounds, like nitrotoluenes or dinitrotoluenes.
Keywords:NITROAROMATIC COMPOUNDS;PSEUDOMONAS-PSEUDOALCALIGENES;2;4;6-TRINITROTOLUENE TNT;MICROBIAL-METABOLISM;DEGRADATION;BIOREMEDIATION;TRANSFORMATION;PATHWAYS;EFFLUENT;STRAIN