Revue de l Institut Francais du Petrole, Vol.50, No.4, 537-550, 1995
LATERAL AND VERTICAL THERMAL DIFFUSIVITIES IN A DENSE FLUIDIZED-BED WITH TUBES BUNDLE
Dense fluidized beds are acknowledged as homogeneous systems from both temperature and composition aspects. However, some situations such as very large units or fluidized beds with tubes bundle lead to thermal gradients within the bed. These thermal gradients are due to solids motion limitation and may have detrimental effects on the process. This paper relates investigations aiming al determining lateral and vertical thermal diffusivities in a dense fluidized bed with and without a tubes bundle. These investigations have been carried out with an experimental setup of significant size (bed size = 0.6 x 1.1 x 1.3) and with small particles (less 500 microns) so as to fill some gaps of the literature. Thermal diffusivities have been deduced from temperature gradients measured between a hot wall and a cold wall in a perpendicular fluidized bed and by applying a conventional 2-D conduction model. Lateral thermal conductivities as well as vertical thermal conductivities increase with the gas velocity and the height of the bed, and when the particle size decreases. Immersing a vertical tube bundle into the fluidized bed leads to a significant reduction of the lateral thermal diffusivity, while there is no effect on the vertical thermal diffusivity. Correlations have been drawn from the experimental results. They would have to be applied for calculation of any system running at gas velocity ranging from 0.05 to 0.3 m/s and with particle size between 50 and 300 microns.
Keywords:GAS