화학공학소재연구정보센터
Rheologica Acta, Vol.35, No.2, 117-126, 1996
Rheotens mastercurves and elongational viscosity of polymer melts
In a Rheotens experiment, the tensile force needed for elongation of an extruded filament is measured as a function of the draw ratio. For thermo-rheologically simple polymer melts, the existence of Rheotens-mastercurves was proved by Wagner, Schulze, and Gottfert (1995). Rheotens-mastercurves are invariant with respect to changes in melt temperature and changes in the average molar mass. By use of purely viscous models, we convert Rheotens-mastercurves of a branched and a linear polyethylene melt to elongational viscosity as a function of strain rate. The resulting elongational viscosity from constant force extension experiments is found to be in general agreement with what is expected as steady-state viscosity of polyethylene melts measured in either constant strain-rate or constant stress mode.