화학공학소재연구정보센터
Rheologica Acta, Vol.35, No.2, 139-149, 1996
Structure and rheology of wormlike micelles
In a semi-dilute aqueous solution under certain conditions, surfactant molecules will self assemble to form wormlike micelles. The micelles are dynamic in structure since they can break and reform, providing an additional mode of relaxation. The viscoelastic properties of the wormlike micelles can be predicted using simple rheological models. For many surfactant solutions the mechanical data can be related to the optical data by the stress-optical rule. From the viscoelastic data it is possible to estimate the breaking time of the micelle. The techniques of birefringence and small angle light scattering are used to study the microstructure of a surfactant solution under simple shear and extensional flow The sample under investigation is a solution of cetyltrimethylammonium bromide and sodium salicylate in water, with a salt to surfactant ratio of 7.7. Below a critical shear rate, the birefringence increases linearly with shear rate and the stress-optical rule is valid. The SALS patterns reveal distinctive butterfly patterns indicating that scattering is a result of concentration fluctuations that moderately couple to the flow. However, above a critical shear rate the birefringence plateaus and the stress-optical rule is no longer valid. SALS patterns show both a bright streak and a butterfly pattern. The bright streak is caused by elongated structures aligned in the direction of the flow. The oriented structures occur when the characteristic time of flow is faster than the breaking time of the micelles.