- Previous Article
- Next Article
- Table of Contents
Rheologica Acta, Vol.36, No.2, 97-109, 1997
Shear rheology of polymer solutions near the critical condition for elastic instability
The use of constant viscosity, highly elastic polymer solutions, so called Boger fluids, has been remarkably successful in elucidating the behavior of polymeric materials under flowing conditions. However, the behavior of these fluids is still complicated by many different physical processes occurring within a narrow window of observation time and applied shear rate. In this study, we investigate the long-time shear behavior of an ideal Boger fluid: a well characterized, athermal, dilute, binary solution of high molecular weight polystyrene in oligomeric polystyrene. Rheological measurements show that under an applied steady shear flow, this family of polymer solutions undergoes a transient decay of normal stresses on a timescale much longer than the polymer molecule's relaxation time. Rheological and flow visualization results demonstrate that the observed phenomenon is not caused by polymer degradation, phase separation, viscous heating, or secondary flows from elastic instabilities. Although the timescale is much shorter than that associated with polymer migration in the same solutions (MacDonald and Muller, 1996), the appearance of this phenomenon only at the rates where migration has been observed suggests that it may be a prerequisite for observing migration. In addition, we note that through sufficient preshearing of the sample, the normal stress decrease suppresses the elastic instability. These results show that there is considerable uncertainty in choosing the appropriate measure of the fluid relaxation time for consistently modeling the critical condition for the elastic instability, the decay of normal stresses, and the migration of polymer species.
Keywords:ROTATING PARALLEL DISKS;CONE-AND-PLATE;SPIRAL INSTABILITIES;PHASE-SEPARATION;BOGER FLUIDS;FLOW;LIQUIDS;SPHERES