화학공학소재연구정보센터
Rheologica Acta, Vol.37, No.6, 556-565, 1998
Experimental and conceptual problems in the rheological characterization of wheat flour doughs
Wheat flour dough is an industrially important material and a better understanding of its rheological behavior could have long ranging impact on the agricultural and the food processing industries. However, rheological characterization of dough is proving to be difficult due to a range of testing issues and anomalies in flow behavior. In a cone-and-plate rheometer wheat flour doughs "roll-out" of the gap before steady state viscosities can be established, as discussed by Bloksma and Nieman (1975). However, the mirror image of the transient viscosity-time plot obtained using a cone-and-plate viscometer has been used to obtain an estimate of steady shear viscosity behavior (Gleissle, 1975). To check this transient methodology for doughs, a second method, in addition to cone-and-plate transient flow for determination of the shear viscosity, was needed. For this, capillary extrusion was chosen. Both a piston-driven and pressure driven capillary rheometer were employed. End corrections were determined to provide information on both the shear viscosity and, following Binding (1988), the extensional viscosity of the doughs. There are few data available on end corrections for doughs, though published data by Kieffer indicate that the corrections are unexpectedly very high. In this present work it was found that the end correction experiments were very difficult and imprecise in part due to the time-dependent nature of the doughs and difficulties in preparing replicate batches required to compare dies of differing L/R values. Further it was unexpectedly found that the samples, though prepared by normal mixing procedures to the "optimum" level, were so heterogeneous that large fluctuations in the pressure at constant output rate (in the piston-driven rheometer) and in output rate at constant pressure (in the pressure-driven instrument) were observed. These fluctuations could be eliminated by overmixing of the doughs, but overmixed doughs are of little practical interest. Although the problems encountered in this work were significant, it was encouraging that even these preliminary studies indicate that rheological measurements are effective in differentiating between spring and winter wheats. Defining a constitutive model for dough rheology still remains a major challenge, as results from one type of testing do not corroborate the findings from a different type of testing.