Rheologica Acta, Vol.38, No.2, 160-171, 1999
Influence of elongational properties on the contraction flow of polyisobutylene in a mixed solvent
Over the last decade several international programmes have been developed around different standard fluids, one of which is the so-called S1 fluid. This is a solution of polyisobutylene in a mixed solvent and the aim of the programme has been to study the rheology of polymer solutions from the dilute solution to the melt. The focus of this paper will be on the flow visualisation of contraction flows of SI through orifice dies and on the estimation of some of its extensional properties. The contraction ratios range from 24.4:1 and 124.3:1. The measured entry pressure drops will be correlated with contraction ratio and apparent wall shear rate. Experimental evidence will show that, when regarded as a function of wall shear rate, the entry pressure drops are independent of the contraction ratios. The flow fields for different contraction ratios, at any constant apparent wall sheer rate, however, differ substantially. The evolution of the flow fields is monitored and it is shown that an initial increase in vortex size is followed by a slower decrease, this happening at a constant Weissenberg number. At the same Weissenberg number, small scale instabilities start occurring near the office. As the shear rate is increased further, these instabilities grow in size until, eventually, the flow structure is destroyed. An extensional viscosity is evaluated using a modified form of the Binding analysis for contraction flows and we show that the results are not only in qualitative agreement with those from other groups, but also that the analysis is able to predict exactly the onset of the aforementioned flow instabilities.
Keywords:TUBULAR ENTRY FLOW;POLYMER-SOLUTIONS;CONVERGING FLOW;VISCOELASTIC FLUIDS;THICK SOLVENTS;STABLE FLOW;RHEOMETRY;DIES;LDV