화학공학소재연구정보센터
Atomization and Sprays, Vol.9, No.1, 51-68, 1999
The effect of manifold cross-flow on the discharge coefficient of sharp-edged orifices
The objective of this study is to determine the effect of manifold cross-flow on the discharge coefficient and cavitation characteristics of sharp-edged orifices over a wide range of flow rates, back pressures, and cross-flow velocities. The geometries studied cover a range of orifice diameters, length-to-diameter ratios, and orifice angles characteristic of impinging-element liquid rocket injectors. Experimental results for an orifice angle of 90 degrees with respect to the manifold are presented. Along with the experimental effort, an analytical model has been developed. The model predicts the discharge coefficient for a sharp-edged orifice over a wide range of flow regimes including cavitating and noncavitating flow, and for a wide range of orifice geometries. The analytical model generally shows good agreement with the experimental data over the range of conditions studied here. The model also closely follows the experimental data for cavitating flow except when the orifice length-to-diameter ratio is small, in which case the model overpredicts the discharge coefficient.