Science, Vol.276, No.5312, 586-589, 1997
Neurogenesis in Postnatal Rat Spinal-Cord - A Study in Primary Culture
Spinal cord injuries result in paralysis, because when damaged neurons die they are not replaced. Neurogenesis of electrophysiologically functional neurons occurred in spinal cord cultured from postnatal rats. In these cultures, the numbers of immunocytochemically identified neurons increased over time. Additionally, neurons identified immunocytochemically or electrophysiologically incorporated bromodeoxyuridine, confirming they had differentiated from mitotic cells in vitro. These findings suggest that postnatal spinal cord retains the capacity to generate functional neurons. The presence of neuronal precursor cells in postnatal spinal cord may offer new therapeutic approaches for restoration of function to individuals with spinal cord injuries.
Keywords:MICROTUBULE-ASSOCIATED PROTEIN-2;ADULT MAMMALIAN FOREBRAIN;NEURON-SPECIFIC ENOLASE;HIPPOCAMPAL-NEURONS;POSTTRANSLATIONAL MODIFICATION;SUBVENTRICULAR ZONE;REACTIVE ASTROCYTES;MEMBRANE-PROPERTIES;BETA-TUBULIN;ION CHANNELS