Separation Science and Technology, Vol.30, No.7-9, 1169-1187, 1995
Electric Field-Enhanced Coalescence of Liquid-Drops
A fundamental understanding of drop coalescence and growth is of importance to separations and materials processing. Under external driving forces, drops dispersed in an immiscible fluid collide and coalesce with each other due to their relative motion. As a result of drop coalescence, the average drop size in the dispersion increases over time, improving the separation process. Collision and coalescence of spherical, conducting drops bearing no net charge in dilute, homogeneous dispersions are considered theoretically under conditions where drop motion results from gravity settling and electric field-induced attraction. A trajectory analysis is used to follow the relative motion of two drops and predict pairwise collision rates. A population dynamics equation is then solved to predict the time evolution of the size distribution and the average size of drops. The results show that the rate of drop collision and growth can be increased significantly by applying an electric field, in accord with fundamental experiments and patents on electrocoalescence.