SIAM Journal on Control and Optimization, Vol.34, No.6, 1999-2023, 1996
Linearization of Discrete-Time-Systems
The algebraic formalism developed in this paper unifies the study of the accessibility problem and various notions of feedback linearizability for discrete-time nonlinear systems. The accessibility problem for nonlinear discrete-time systems is shown to be easy to tackle by means of standard linear algebraic tools, whereas this is not the case for nonlinear continuous-time systems, in which case the most suitable approach is provided by differential geometry. The feedback linearization problem for discrete-time systems is recasted through the language of differential forms. In the event that a system is not feedback linearizable, the largest feedback linearizable subsystem is characterized within the same formalism using the notion of derived flag of a Pfaffian system. A discrete-time system may be linearizable by dynamic state feedback, though it is not linearizable by static state feedback. Necessary and sufficient conditions are given for the existence of a so-called linearizing output, which in turn is a sufficient condition for dynamic state feedback linearizability.
Keywords:DYNAMIC FEEDBACK LINEARIZATION;LINEAR ALGEBRAIC FRAMEWORK;INPUT-OUTPUT LINEARIZATION;NONLINEAR-SYSTEMS;CONTROLLABILITY;ACCESSIBILITY