SIAM Journal on Control and Optimization, Vol.38, No.2, 582-612, 2000
Stochastic calculus for fractional Brownian motion - I. Theory
In this paper a stochastic calculus is given for the fractional Brownian motions that have the Hurst parameter in (1/2, 1). A stochastic integral of Ito type is defined for a family of integrands so that the integral has zero mean and an explicit expression for the second moment. This integral uses the Wick product and a derivative in the path space. Some Ito formulae (or change of variables formulae) are given for smooth functions of a fractional Brownian motion or some processes related to a fractional Brownian motion. A stochastic integral of Stratonovich type is defined and the two types of stochastic integrals are explicitly related. A square integrable functional of a fractional Brownian motion is expressed as an infinite series of orthogonal multiple integrals.