Thin Solid Films, Vol.244, No.1-2, 923-927, 1994
Determination of the Parallel and Perpendicular Intermolecular Tunneling Rates in 2 Langmuir-Blodgett Quantum-Well Systems
The first experimental determination of the anisotropy of the electron transfer rate in two Langmuir-Blodgett insulator multilayer systems is presented. A key feature of these two multilayer systems is the presence of the planar conjugated phthalocyanine ring. The first system is composed of tetra-tertiary-butyl phthalocyanine monosulphonic acid. In it the ring planes are approximately normal to the layer plane. The second system is composed of the two-ring phthalocyanine HOSiPcOSiPcOSI(n-C6H13)3. In it the rings lie in the layer plane. The anisotropy of the systems is determined from a model of the recombination rate, at high density, of photoelectrons and photoholes on the same layer. The ratio of the intralayer to interlayer transfer rates between adjacent rings is found to be 1500 and 570 respectively. Coupled with a previous determination of the interlayer transfer time of 1.6 and 0.30 ns, the intralayer transfer times are then determined as 1.07 and 0.56 ps respectively. The in-plane mobilities can then be determined as 0.34 and 1.2 cm2 s-1 V-1 respectively. The results justify regarding these systems as organic multiple-quantum wells.
Keywords:MOLECULAR ELECTRONIC MEMORY;PRINCIPLES