Thin Solid Films, Vol.317, No.1-2, 144-148, 1998
Investigation of the amorphous to microcrystalline phase transition of thin film silicon produced by PECVD
We have deposited by Plasma Enhanced Chemical Vapour Deposition phosphorus doped amorphous and microcrystalline silicon films, as a function of the RF power (10-300 W), using a PH3/(SiH4 + H-2 + He)mixture. It was found that films microcrystallization occurs for powers above 130 W, where a clear phase transition occurs. The microcrystalline films produced present high dark conductivities and optical band gaps, where the crystalline volume fraction is above 25%, as revealed by micro Raman spectroscopy. The Hall mobility have been also determined for amorphous and microcrystalline films, as a function of temperature, in the range 280-340 K. The data show that for the microcrystalline films the conduction is mainly in the extended states of the microcrystals, confirming also the double sign anomaly. That is, for n-type films, the sign is positive for the amorphous case while it is negative for the microcrystalline case.