Biotechnology and Bioengineering, Vol.47, No.6, 677-687, 1995
Immobilization of Fungal Spores by Adhesion
Immobilization of conidiospores of Phanerochaete chrysosporium by adhesion was investigated in static and flow conditions on flat and on porous supports. Reducing the electrostatic repulsion between the spores and the support by adsorption of polycations on the support allows a better adhesion efficiency and a higher density of adhering spores and does not affect germination and growth. Formation of spore aggregates either in the suspension (high ionic strength) or on the support tends to decrease the surface coverage and to give an inhomogeneous distribution of adhering spores due to detachment of aggregates. The density of spores adhering from a flowing suspension is lower as compared with static conditions and does not exceed about 2% of surface coverage; this is due to the influence of tangential forces, to the short contact time with the surface, and to perturbation of the hydrodynamics along the surface by the previously immobilized spores. Obtaining a high coverage of the support by immobilized spores requires the absence of a tangential motion.