화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.38, No.6, 774-782, December, 2000
3성분 혼합 Ru-Sn-Ti/Ti 산화물 전극의 제조 및 재료 특성(I)
Fabrication and Material properties of Ru-Sn-Ti Ternary Mixed Oxide/Ti Electrode(I)
E-mail:
초록
난분해성 유기물 분해에 효과적인 것으로 알려진 촉매성 산화물 전극의 제조 및 재료 특성이 연구되었다. Ti 지지체에 Ru, Ru-Sn, Ru-Sn-Ti 산화막을 제작하는 과정에서 전극의 재현성을 높이기 위한 방법이 연구되었으며, 에칭조건, 소결 온도 및 산화물의 조성 비율을 변화시켜나가며 제작된 전극의 여러 가지 물리적, 재료적 성질 및 코팅물질의 접착강도 등이 TGA, AES, XPS, EPMA, SEM 그리고 tape test를 사용하여 측정되었고, 촉매 전극의 활성을 갖게 하는 전극 표면의 촉매산화물의 비양론율(degree of non-stochiometry)이 측정되었다. 초기 Ti 지지체의 에칭 상태가 전극 제작 재현성과, 전극의 morphology, 코팅되는 산화물의 양에 영향을 미치며, 산화물내의 조성은 소결 온도에 따라 변화하며 600℃ 이전에는 비양론적 산화물인 MO(2-x)(0
Fabrication and material properties of the catalytic oxide electrode, which is known to be so effective to destruct refractory organics in aqueous waste, were studied. A method to enhance the fabrication reproducibility of the oxide electrodes was tested for Ru, Ru-Sn, Ru-Sn-Ti oxide on the Ti substrate, and various physical and material characteristics of the oxide electrodes and an adhesive degree of the oxides to the substrate were examined with changes of sintering temperature, composition of metal oxides, and etching condition, using TGA, AES, XPS, EPMA, SEM and a tape test. The degree of non-stochiometry in the oxide, being attributed to the catalytic property of the oxide electrode, was evaluated. The etching condition of Ti substrate was found to have a severe effect on the fabrication reproducibility, the surface morphology, and the amount of oxide coated on the substrate of the oxide electrode. The metal oxide sintered below 600℃ was confirmed to have a non-stochiometric compound of MO2-x(0
  1. Rajeshwar K, Ibanez JG, "Environmental Electrochemistry," Academic press Inc., London (1997)
  2. Scott K, "Electrochemical Process for Clean Technology," The Royal Society of Chemistry, U.K. (1995)
  3. Kinoshida K, "Electrochemical Oxygen Technology," John Wiley & Sons, Inc., N.Y. (1992)
  4. Trasatti S, "Electrode of conductive Metallic Oxides," Part A, Elsevier Sci. Pub. Co., Amsterdam (1980)
  5. Trasatti S, Electrochim. Acta, 29(11), 1504 (1984)
  6. Comniellis C, Electrochim. Acta, 39(11-12), 1857 (1994) 
  7. Boodts JFC, Trasatti S, J. Electrochem. Soc., 137(12), 3784 (1990) 
  8. Battisti AD, Lodi G, Cappadonia M, Battaglin G, Kotz R, J. Electrochem. Soc., 136(9), 2596 (1989) 
  9. Krysa J, Kule L, Mraz R, Rousar I, J. Appl. Electrochem., 26, 1996 (1996)
  10. Silva LD, Alves VA, Silva MAPD, Trasatti S, Boots JFC, Can. J. Chem., 75, 1483 (1997) 
  11. Annual Book of STM Standars, Vol. 06.01
  12. Krysa J, Kule L, Mraz R, Rousar I, J. Appl. Electrochem., 26(10), 999 (1996)
  13. Krysa J, Mraz R, Electrochim. Acta, 40(12), 1997 (1995) 
  14. Galizzioli D, Tantardini F, Trasatti S, J. Appl. Electrochem., 5, 203 (1975) 
  15. Galizzioli D, Tantardini F, Trasatti S, J. Appl. Electrochem., 4, 57 (1974) 
  16. Teo RS, Orehotsky J, Visscher W, Srinivasan S, J. Electrochem. Soc., 128(9), 1900 (1981) 
  17. Kim KH, Lee SW, Shin DW, Park CG, J. Am. Ceram. Soc., 77(4), 915 (1994) 
  18. Kotz R, Lewwewnz HJ, Stucki S, J. Electrochem. Soc., 130(4), 825 (1983) 
  19. Lassali TAF, Bulhoes LOS, Abeid LMC, Boodts JFC, J. Electrochem. Soc., 144(10), 3348 (1997) 
  20. Angelinetta C, Trasatti S, Mater. Chem. Phys., 22, 231 (1989) 
  21. Battisti AD, Brina R, Gaveeli G, Benedetti A, Fagherazzi G, J. Electroanal. Chem., 200, 93 (1985) 
  22. Kim HS, Cho BW, Yun KS, HWAHAK KONGHAK, 28(3), 279 (1990)
  23. Choi JG, J. Catal., 182(1), 104 (1999)