화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.38, No.6, 864-868, December, 2000
경사단면 기포탑에서 기체 체류량 및 기포 특성
Gas Holdup and Bubble Characteristics in Tapered Bubble Columns
E-mail:
초록
경사단면 기포탑에서 축방향 및 반경방향의 기체 체류량 분포와 기포의 특성에 대해 고찰하였다. 기포 특성은 전기저항 탐침법을 이용하여 측정하였으며, 조작변수로는 기체와 액체 유량을 선정하였다. 경사단면 구조는 수직과 6°의 경사각을 이루고 있으며, 높이는 0.5m인데, 탑 하부의 직경은 0.05 m이고 탑 상부의 직경은 0.15 m로 직경이 점점 증가되는 형태로 되어 있다. 기상과 액상으로는 건조된 압축 공기와 상온의 물을 각각 사용하였다. 실험결과, 기체 유량의 증가에 따라 전영역에서 국부 기체 체류량이 증가했으며, 액체 유량의 증가에 대해서는 거의 영향이 없거나 아주 미세하게 감소했다. 반경방향으로의 기체 체류량 분포는 탑의 중앙에서 최대값을 가지면서 벽면으로 갈수록 선형적으로 감소했으며, 축방향 높이의 증가에 따라서는 평균 기체 체류량은 감소하였으나 국부 기체 체류량은 반경방향으로 점점 균일해지는 분포를 나타냈다. 경사단면 기포탑에서 기포의 크기와 상승속도는 기체유량과 탑의 높이에 따라 증가했으며, 기체의 체류량, 기포의 크기 및 상승속도는 실험변수들의 상관식으로 나타낼 수 있었다.
Radial and axial distributions of gas holdup and bubble characteristics have been investigated in a tapered bubble column. Bubble characteristics have been measured by using dual electrical resistivity probe method, with the variations of operating variables such as gas and liquid flow rates. Experiments have been conducted with a conical-shaped column of 0.5 m in height, with an apex angle of 12 °. The column size has been 0.05 m I.D. and 0.15 m I.D. at the bottom and top, respectively Compressed air and tap water have been used as a dispersed gas and a continuous liquid phase, respectively. It has been found that the gas holdup has increased with increasing gas flow rate at all test sections, and slightly decreased with increasing liquid flow rate. The radial gas holdup distribution has been found to have maximum value at the centerline of the column and it has decreased as approaching the wall region. The local gas holdup has been more uniform with increasing the height from the distributor. The bubble size and rising velocity have increased with increasing gas flow rate and height in the column, which have been well correlated in terms of operating variables.
  1. Nishikawa M, Yonezawa Y, Kayama T, Koyama K, Nagata S, J. Chem. Eng. Jpn., 9, 214 (1976)
  2. Nishikawa M, Shiino K, Kayama T, Nishioka S, Hashimoto K, J. Chem. Eng. Jpn., 18, 496 (1985)
  3. Anabtawi MZ, Uysal BZ, Jumah RY, Abdel-Jalil NK, Chem. Eng. J., 47, 135 (1991) 
  4. Anabtawi MZ, J. Chem. Eng. Jpn., 28(6), 684 (1995) 
  5. Reese J, Fan LS, Chem. Eng. Sci., 52(9), 1553 (1997) 
  6. Kawagoe M, Yoshida S, Ishii Y, Naoe K, Can. J. Chem. Eng., 77(5), 811 (1999)
  7. Kawagoe M, Maeoka T, Kag. Kog. Ronbunshu, 22(3), 629 (1996)
  8. Peng Y, Fan LT, Chem. Eng. Sci., 52(14), 2277 (1997) 
  9. Akita K, Yoshida F, Ind. Eng. Chem. Proc. Des. Dev., 12, 76 (1973) 
  10. Sarrafi A, Jamialahmadi M, Muller-Steinhagen H, Smith JM, Can. J. Chem. Eng., 77(1), 11 (1999)
  11. Kang Y, Cho YJ, Woo KJ, Kim KI, Kim SD, Chem. Eng. Sci., 55(2), 411 (2000) 
  12. Yu YH, Kim SD, Chem. Eng. Sci., 46, 313 (1991) 
  13. Kim JO, Master Thesis, KAIST (1986)
  14. Kang Y, Lim WM, Kim SD, HWAHAK KONGHAK, 25(5), 460 (1987)
  15. Hikita H, Asai S, Tanigawa K, Segawa K, Kitao M, Chem. Eng. J., 20, 59 (1980) 
  16. Hughmark GA, Ind. Eng. Chem. Proc. Des. Dev., 6, 218 (1967) 
  17. Krishna R, Urseanu MI, van Baten JM, Ellenberger J, Chem. Eng. Sci., 54(2), 171 (1999)