화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.1, 96-102, February, 2001
Finite Element Method에 의한 고로내 분거동 해석
Fines Behavior Analysis in Blast Furnace with Finite Element Method
E-mail:
초록
미분탄 취입량 증가와 함께 고로내에서 분의 거동은 조업상태를 결정하는 중요한 요소가 되었다. 유동 충진층의 일종인 고로내에서 분농도 분포를 추정하기 위해서 Ergun식을 활용하여 고로내 가스유속 및 압력분포를 FEM(Finite Element Method)에 의해서 2차원으로 해석하였다. 분의 거동 해석은 분과 충진입자간 충돌저항력과 중력에 의한 저항 등을 고려한 모멘텀 밸런스를 구한 후 실험실적으로 구한 분속도 추정식과 결합하여 해석하였다. 해석 결과 충진층내에서 분의 축적량을 결정하는데 있어서 분입도, 분발생량 및 분 밀도 순으로 영향을 미치는 것을 알 수 있었다. 풍구를 통해 샘플링된 분의 농도는 수치 해석에 의해서 구한 농도값과 비교한 결과 매우 잘 일치하였으며 분 농도가 10%가 되는 지점은 1.5-2m정도가 되는 것으로 나타났다. 분의 농도가 높은 지역은 노심내로서 20-30%를 나타냈으며 연화융착대 부분과 연화융착대 직상의 벽부에서는 10-20%의 분 농도를 나타냈다.
Fines behaviors are considered as main factors in determining the operation states of blast furnace with PCI(Pulverized Coal Injection). The gas velocity and pressure distribution in blast furnace was analyzed by Ergun equation with two dimensional FEM(Finite Element Method). The theoretical model to predict the pressure drop was used under assumption that the interaction force between gas and powder is main resistance factor in fines flow through packed bed. To estimate the powder hold-up, the model is combined with the experimental result on the fines velocity in gas stream. The size of fines is most important factor in determining the concentration of fine in blast furnace together with density and feeding rate. Both of the measured and calculated results show that 10% fines concentration is at 1.5-2 m distance from tuyere tip. The results of 2-D numerical analysis on the distribution of fines concentration in blast furnace shows 20-30% in deadman and 10-20% above the root of cohesive zone.
  1. Chung JK, Hur NS, ISIJ int., 37(2), 119 (1997)
  2. Ergun S, Chem. Eng. Prog., 48, 89 (1952)
  3. Fan LS, Toda M, Satija S, Powder Technol., 36, 107 (1982)
  4. Yamaoka H, Tetsu-to-Hagane, 72, 403 (1986)
  5. Yamaoka H, Tetsu-to-Hagane, 72, 2194 (1986)
  6. Kusakabe K, Yamaki T, Morooka S, Matsuyama H, Tetsu-to-Hagane, 77, 1407 (1991)
  7. Kusakabe K, Yamaki T, Morooka S, Tetsu-to-Hagane, 77, 1413 (1991)
  8. Shibata K, Shimizu M, Inaba S, Takahashi R, Yagi J, Tetsu-to-Hagane, 77, 236 (1991)
  9. Shibata K, Shimizu M, Inaba S, Takahashi R, Yagi J, Tetsu-to-Hagane, 77, 1267 (1991)
  10. Ariyama T, Asakawa Y, J. Chem. Eng. Jpn., 22, 171 (1996)
  11. Kusakabe K, Report of Research Committee on Transport Phenomena of Four Fluids, 61 (1996)
  12. Yagi J, Takeda K, Omori Y, Tetsu-to-Hagane, 66, 108 (1980)
  13. Park YOJ, Ph.D. Dissertion, University of Houston, USA (1989)
  14. Chung JK, Park PW, HWAHAK KONGHAK, 36(5), 743 (1998)
  15. Korean Patent, 1997-25769. (1997)
  16. Matsui Y, CAMP ISIJ, 12, 632 (1999)