화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.3, 352-360, May, 1997
지방족 Copolyester 및 Copolyesteramide의 합성과 분해성 (3)
Synthesis and Degradability of Aliphatic Copolyester and Copolyesteramide(3)
초록
분자량이 크고 생분해성을 가지는 copolyesteramide를 합성하기 위해 ε-caprolactone (CLN)과 ε-caprolactam (CLM)을 Na 존재하에서 공중합하여 얻은 copolyesteramide를 사슬연장제 succinyl chloride, adipoyl chloride, sebacoyl chloride 및 4,4'-diphenylmethanediisocyanate에 의해 각각 사슬연장반응을 행하였다. 그 다음 copolyesteramide와 사슬연장된 copolyesteramide의 성질을 조사하였다. Copolyesteramide 중의 CLN 조성은 공급조성 중의 CLN 조성보다 높았으며, copolyesteramide의 분자량과 수율은 CLN 공급조성이 증가할수록 증가하였다. 이들 결과 CLN의 반응성이 CLM의 반응성보다 크다는 것을 뜻한다. 사슬연장된 copolysteramide의 분자량은 사슬연장되지 않은 copolyesteramide의 분자량보다 훨씬 컸다. Copolyesteramide의 분해성보다 지방족 사슬연장제로 사슬연장된 copolyesteramide의 분해성이 컸고, 메틸렌기의 개수가 적은 지방족 사슬연장제로 사슬연장된 copolyesteramide의 분해성이 컸다. Isocyanate로 사슬연장된 copolyesteramide의 분해성은 사슬연장되지 않은 copolyesteramide의 분해성과 비슷하였다.
epsilon-Caprolactone(CLN) was copolymerized with epsilon-caprolactam (CLM) using sodium as a catalyst and the copolyesteramide was separately extended with succinyl chloride, adipoyl chloride, sebacoyl chloride and 4,4'-diphenylmethanediisocyanate as chain extenders in order to synthesize biodegradable copolyesteramide with high molecular weight. The properties of the copolyesteramide and the extended copolyesteramide were then investigated. The composition of CLN in the copolyesteramide was higher than that of CLN in the monomer feed. The molecular weight and the yield of the copolyesteramide increased with increasing the composition of CLN in the monomer feed. These results suggest that the reactivity of CLN is larger than that of CLM. The molecular weights of the extended copolyesteramides were much higher than those of the unextended copolyesteramides. The biodegradability of the copolyesteramides extended by the chlorides increased with decreasing the number of methylene group in the extenders. The biodegradability of the copolyesteramide extended by the isocyanate was similar to that of the unextended copolyesteramide.
  1. Williams DF, Mort E, J. Bioeng., 1, 231 (1979)
  2. Makino K, Anakawa M, Endo T, Chem. Pharm. Bull., 33, 1195 (1985)
  3. Tokiwa Y, Suzuki T, Takeda K, Agric. Biol. Chem., 50, 1323 (1986)
  4. Darby RT, Kaplan AM, Appl. Microbiol., 16, 900 (1968)
  5. Potts JE, Chendinning RA, Ackart WB, Niegisch WD, Am. Chem. Soc. Polym. Prepr., 13, 629 (1972)
  6. Fields RD, Rodriguez F, Finn RK, J. Appl. Polym. Sci., 18, 3571 (1974) 
  7. Diamond MJ, Freedman B, Garibaldi JA, Int. Biodetn Bull., 11, 127 (1975)
  8. Tokiwa Y, Ando T, Suzuki T, J. Ferment. Technol., 54, 603 (1976)
  9. Tokiwa Y, Suzuki T, Ando T, J. Appl. Polym. Sci., 24, 1701 (1979) 
  10. Goodman I, Vachon RN, Eur. Polym. J., 20, 529 (1984) 
  11. Goodman I, Vachon RN, Eur. Polym. J., 20, 539 (1984) 
  12. Goodman I, Eur. Polym. J., 20, 549 (1984) 
  13. Yamamoto N, Nakayama A, Iyoda J, Ukita M, Hayashi K, Polym. Prepr., 40, 2712 (1991)
  14. Perrin DD, Armarego WLF, "Purification of Laboratory Chemicals," 3rd Ed., p. 115, 194, 157 (1988)
  15. Komatsu S, Tokiwa Y, Kobunshi Ronbunshu, 50, 785 (1993)
  16. Tokiwa Y, Suzuki T, Takeda K, Agric. Biol. Chem., 52, 1937 (1986)